skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2025

Title: Climate, Hydrology, and Nutrients Control the Seasonality of Si Concentrations in Rivers
Abstract The seasonal behavior of fluvial dissolved silica (DSi) concentrations, termedDSi regime, mediates the timing of DSi delivery to downstream waters and thus governs river biogeochemical function and aquatic community condition. Previous work identified five distinct DSi regimes across rivers spanning the Northern Hemisphere, with many rivers exhibiting multiple DSi regimes over time. Several potential drivers of DSi regime behavior have been identified at small scales, including climate, land cover, and lithology, and yet the large‐scale spatiotemporal controls on DSi regimes have not been identified. We evaluate the role of environmental variables on the behavior of DSi regimes in nearly 200 rivers across the Northern Hemisphere using random forest models. Our models aim to elucidate the controls that give rise to (a) average DSi regime behavior, (b) interannual variability in DSi regime behavior (i.e., Annual DSi regime), and (c) controls on DSi regime shape (i.e., minimum and maximum DSi concentrations). Average DSi regime behavior across the period of record was classified accurately 59% of the time, whereas Annual DSi regime behavior was classified accurately 80% of the time. Climate and primary productivity variables were important in predicting Average DSi regime behavior, whereas climate and hydrologic variables were important in predicting Annual DSi regime behavior. Median nitrogen and phosphorus concentrations were important drivers of minimum and maximum DSi concentrations, indicating that these macronutrients may be important for seasonal DSi drawdown and rebound. Our findings demonstrate that fluctuations in climate, hydrology, and nutrient availability of rivers shape the temporal availability of fluvial DSi.  more » « less
Award ID(s):
1831952 2224743 2012796 1929393
PAR ID:
10567819
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
129
Issue:
9
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This dataset includes monthly dissolved silicon (DSi) concentration data from 198 rivers across the Northern Hemisphere. Concentration and discharge data were sourced from public and/or published datasets and the Weighted Regressions on Time, Discharge, and Season model (Hirsch et al. 2010) was used to estimate monthly concentrations and flow-normalized concentrations for all sites over their period of record. Sites span eight climate zones, ranged from 18 degrees N to 70 degrees N, and vary in drainage area from < 1 km2 to nearly 3 million km2. These monthly concentration data were then used to cluster sites into average (i.e., average of all years) and annual (i.e., each year individually) seasonal regimes using a time-series clustering approach. The annual regimes were used to quantify how often a site moved among regimes over its period of record (i.e., stability). Site characteristics including climate zone, discharge, and concentration-discharge behavior were explored as potential drivers of cluster membership and stability. 
    more » « less
  2. Abstract Fluvial silicon (Si) plays a critical role in controlling primary production, water quality, and carbon sequestration through supporting freshwater and marine diatom communities. Geological, biogeochemical, and hydrological processes, as well as climate and land use, dictate the amount of Si exported by streams. Understanding Si regimes—the seasonal patterns of Si concentrations—can help identify processes driving Si export. We analyzed Si concentrations from over 200 stream sites across the Northern Hemisphere to establish distinct Si regimes and evaluated how often sites moved among regimes over their period of record. We observed five distinct regimes across diverse stream sites, with nearly 60% of sites exhibiting multiple regime types over time. Our results indicate greater spatial and interannual variability in Si seasonality than previously recognized and highlight the need to characterize the watershed and climate variables that affect Si cycling across diverse ecosystems. 
    more » « less
  3. Climate change affects cryosphere-fed rivers and alters seasonal sediment dynamics, affecting cyclical fluvial material supply and year-round water-food-energy provisions to downstream communities. Here, we demonstrate seasonal sediment-transport regime shifts from the 1960s to 2000s in four cryosphere-fed rivers characterized by glacial, nival, pluvial, and mixed regimes, respectively. Spring sees a shift toward pluvial-dominated sediment transport due to less snowmelt and more erosive rainfall. Summer is characterized by intensified glacier meltwater pulses and pluvial events that exceptionally increase sediment fluxes. Our study highlights that the increases in hydroclimatic extremes and cryosphere degradation lead to amplified variability in fluvial fluxes and higher summer sediment peaks, which can threaten downstream river infrastructure safety and ecosystems and worsen glacial/pluvial floods. We further offer a monthly-scale sediment-availability-transport model that can reproduce such regime shifts and thus help facilitate sustainable reservoir operation and river management in wider cryospheric regions under future climate and hydrological change. 
    more » « less
  4. Riverine silicon (Si) plays a vital role in governing primary production, water quality, and carbon sequestration. The Global Aggregation of Stream Silica (GlASS) database was constructed to assess changes in riverine Si concentrations and fluxes, their relationship to available nutrients, and to evaluate mechanisms driving these patterns. GlASS includes dissolved Si (DSi), dissolved inorganic nitrogen, and dissolved inorganic phosphorus concentrations at daily to quarterly time steps, daily discharge, and watershed characteristics for rivers with drainage areas ranging < 1 km2 to 3 million km2 and spanning eight climate zones, mainly in the northern hemisphere. Data range between years 1963 and 2023. GlASS uses publicly available datasets, ensuring transparency and reproducibility. Original data sources are cited, data quality assurance workflows are public, and input files to a common load estimator are provided. 
    more » « less
  5. Lakes are key ecosystems within the global biogeosphere. However, the bottom-up controls on the biological productivity of lakes, including surface temperature, ice phenology, nutrient loads and mixing regime, are increasingly altered by climate warming and land-use changes. To better understand the environmental drivers of lake productivity, we assembled a dataset on chlorophyll-a concentrations, as well as associated water quality parameters and surface solar irradiance, for temperate and cold-temperate lakes experiencing seasonal ice cover. We developed a method to identify periods of rapid algal growth from in situ chlorophyll-a time series data and applied it to measurements performed between 1964 and 2019 across 357 lakes, predominantly located north of 40°. Long-term trends show that the algal growth windows have been occurring earlier in the year, thus potentially extending the growing season and increasing the annual productivity of northern lakes. The dataset is also used to analyze the relationship between chlorophyll-a growth rates and solar irradiance. Lakes of higher trophic status exhibit a higher sensitivity to solar radiation, especially at moderate irradiance values during spring. The lower sensitivity of chlorophyll-a growth rates to solar irradiance in oligotrophic lakes likely reflects the dominant role of nutrient limitation. Chlorophyll-a growth rates are significantly influenced by light availability in spring but not in summer and fall, consistent with a switch to top-down control of summer and fall algal communities. The growth window dataset can be used to analyze trends in lake productivity across the northern hemisphere or at smaller, regional scales. We present some general trends in the data and encourage other researchers to use the open dataset for their own research questions. 
    more » « less