skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Phase separation and aggregation in multiblock chains
This paper focuses on phase and aggregation behavior for linear chains composed of blocks of hydrophilic and hydrophobic segments. Phase and conformational transitions of patterned chains are relevant for understanding liquid–liquid separation of biomolecular condensates, which play a prominent role in cellular biophysics and for surfactant and polymer applications. Previous studies of simple models for multiblock chains have shown that, depending on the sequence pattern and chain length, such systems can fall into one of two categories: displaying either phase separation or aggregation into finite-size clusters. The key new result of this paper is that both formation of finite-size aggregates and phase separation can be observed for certain chain architectures at appropriate conditions of temperature and concentration. For such systems, a bulk dense liquid condenses from a dilute phase that already contains multi-chain finite-size aggregates. The computational approach used in this study involves several distinct steps using histogram-reweighting grand canonical Monte Carlo simulations, which are described in some level of detail.  more » « less
Award ID(s):
2011750
PAR ID:
10508947
Author(s) / Creator(s):
Publisher / Repository:
The Journal of Chemical Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
158
Issue:
15
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Histogram-reweighting grand canonical Monte Carlo simulations are used to obtain the critical properties of lattice chains composed of solvophilic and solvophobic monomers. The model is a modification of one proposed by Larson et al. [J. Chem. Phys. 83, 2411 (1985)], lowering the “contrast” between beads of different types to prevent aggregation into finite-size micelles that would mask true phase separation between bulk high- and low-density phases. Oligomeric chains of lengths between 5 and 24 beads are studied. Mixed-field finite-size scaling methods are used to obtain the critical properties with typical relative accuracies of better than 10−4 for the critical temperature and 10−3 for the critical volume fraction. Diblock chains are found to have lower critical temperatures and volume fractions relative to the corresponding homopolymers. The addition of solvophilic blocks of increasing length to a fixed-length solvophobic segment results in a decrease of both the critical temperature and the critical volume fraction, with an eventual slow asymptotic approach to the long-chain limiting behavior. Moving a single solvophobic or solvophilic bead along a chain leads to a minimum or maximum in the critical temperature, with no change in the critical volume fraction. Chains of identical length and composition have a significant spread in their critical properties, depending on their precise sequence. The present study has implications for understanding biomolecular phase separation and for developing design rules for synthetic polymers with specific phase separation properties. It also provides data potentially useful for the further development of theoretical models for polymer and surfactant phase behavior. 
    more » « less
  2. null (Ed.)
    When oppositely charged polyelectrolytes mix in an aqueous solution, associative phase separation gives rise to coacervates. Experiments reveal the phase diagram for such coacervates, and determine the impact of charge density, chain length and added salt. Simulations often use hybrid MC-MD methods to produce such phase diagrams, in support of experimental observations. We propose an idealized model and a simple simulation technique to investigate coacervate phase behavior. We model coacervate systems by charged bead-spring chains and counterions with short-range repulsions, of size equal to the Bjerrum length. We determine phase behavior by equilibrating a slab of concentrated coacervate with respect to swelling into a dilute phase of counterions. At salt concentrations below the critical point, the counterion concentration in the coacervate and dilute phases are nearly the same. At high salt concentrations, we find a one-phase region. Along the phase boundary, the total concentration of beads in the coacervate phase is nearly constant, corresponding to a “Bjerrum liquid''. This result can be extended to experimental phase diagrams by assigning appropriate volumes to monomers and salts. 
    more » « less
  3. Despite longstanding excitement and progress toward understanding liquid–liquid phase separation in natural and artificial membranes, fundamental questions have persisted about which molecules are required for this phenomenon. Except in extraordinary circumstances, the smallest number of components that has produced large-scale, liquid–liquid phase separation in bilayers has stubbornly remained at three: a sterol, a phospholipid with ordered chains, and a phospholipid with disordered chains. This requirement of three components is puzzling because only two components are required for liquid–liquid phase separation in lipid monolayers, which resemble half of a bilayer. Inspired by reports that sterols interact closely with lipids with ordered chains, we tested whether phase separation would occur in bilayers in which a sterol and lipid were replaced by a single, joined sterol–lipid. By evaluating a panel of sterol–lipids, some of which are present in bacteria, we found a minimal bilayer of only two components (PChemsPC and diPhyPC) that robustly demixes into micron-scale, liquid phases. It suggests an additional role for sterol–lipids in nature, and it reveals a membrane in which tie-lines (and, therefore, the lipid composition of each phase) are straightforward to determine and will be consistent across multiple laboratories. 
    more » « less
  4. Abstract The coacervation of alpha‐synuclein (αSyn) into cytotoxic oligomers and amyloid fibrils are considered pathological hallmarks of Parkinson's disease. While aggregation is central to amyloid diseases, liquid–liquid phase separation (LLPS) and its interplay with aggregation have gained increasing interest. Previous work shows that factors promoting or inhibiting aggregation have similar effects on LLPS. This study provides a detailed scanning of a wide range of parameters, including protein, salt and crowding concentrations at multiple pH values, revealing different salt dependencies of aggregation and LLPS. The influence of salt on aggregation under crowding conditions follows a non‐monotonic pattern, showing increased effects at medium salt concentrations. This behavior can be elucidated through a combination of electrostatic screening and salting‐out effects on the intramolecular interactions between the N‐terminal and C‐terminal regions of αSyn. By contrast, this study finds a monotonic salt dependence of LLPS due to intermolecular interactions. Furthermore, it observes time evolution of the two distinct assembly states, with macroscopic fibrillar‐like bundles initially forming at medium salt concentration but subsequently converting into droplets after prolonged incubation. The droplet state is therefore capable of inhibiting aggregation or even dissolving aggregates through heterotypic interactions, thus preventing αSyn from its dynamically arrested state. 
    more » « less
  5. Abstract We consider simple mean field continuum models for first order liquid–liquid demixing and solid–liquid phase transitions and show how the Maxwell construction at phase coexistence emerges on going from finite-size closed systems to the thermodynamic limit. The theories considered are the Cahn–Hilliard model of phase separation, which is also a model for the liquid-gas transition, and the phase field crystal model of the solid–liquid transition. Our results show that states comprising the Maxwell line depend strongly on the mean density with spatially localized structures playing a key role in the approach to the thermodynamic limit. 
    more » « less