skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Prefabricated and Assembled Electromagnetic Shields Inside Electronic Packages to Reduce Near-Field Capacitive and Inductive Coupling
Electromagnetic shielding often requires the integration of thick shielding structures in the form of metal casings, walls, or via arrays. These shields typically isolate the entire package from external or internal noise sources. In some cases, they also isolate components within the package. However, integration of shielding structures with the required performance creates miniaturization and fabrication constraints, and results in longer product development cycle times. To address these limitations, a novel approach is presented for component- and package-level shielding. This approach is based on electromagnetic interference (EMI) shield integration through a microassembly of prefabricated shields inside microslots in packages and printed circuit boards (PCBs). This approach eliminates many of the design and process constraints during the shield integration within packages. Various design options were considered to mitigate capacitive and inductive coupling between representative microstrip lines that act as aggressors and victims. Three types of EMI shielding architectures, U-shaped, inverted-L-shaped, and T-shaped, were investigated with 17.5 μm copper. The fabricated EMI shields were studied for their shield performance, both as a compartmental shield between specific components and as a conformal shield from external and internal noises. The role of the ground termination was also investigated to further optimize the shielding performance.  more » « less
Award ID(s):
2052764
PAR ID:
10509025
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Components, Packaging and Manufacturing Technology
ISSN:
2156-3950
Page Range / eLocation ID:
1 to 1
Subject(s) / Keyword(s):
Compartmentalized shield, Conformal shield, Monolithic copper, Prefabricated and assembled EMI shielding, and Thin and thick EMI shielding.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract MXene and graphene cryogels have demonstrated excellent electromagnetic interference (EMI) shielding effectiveness due to their exceptional electrical conductivity, low density, and ability to dissipate electromagnetic waves through numerous internal interfaces. However, their synthesis demands costly reduction techniques and/or pre‐processing methods such as freeze‐casting to achieve high EMI shielding and mechanical performance. Furthermore, limited research has been conducted on optimizing the cryogel microstructures and porosity to enhance EMI shielding effectiveness while reducing materials consumption. Herein, a novel approach to produce ultra‐lightweight cryogels composed of Ti3C2Tx/graphene oxide (GO) displaying multiscale porosity is presented to enable high‐performance EMI shielding. This method uses controllable templating through the interfacial assembly of filamentous‐structured liquids that are readily converted into EMI cryogels. The obtained ultra‐flyweight cryogels (3–7 mg cm−3) exhibit outstanding specific EMI shielding effectiveness (33 000–50 000 dB cm2 g−1) while eliminating the need for chemical or thermal reduction. Furthermore, exceptional shielding is achieved when the Ti3C2Tx/GO cryogels are used as the backbone of conductive epoxy nanocomposites, yielding EMI shielding effectiveness of 31.7–51.4 dB at a low filler loading (0.3–0.7 wt%). Overall, a one‐of‐a‐kind EMI shielding system is introduced that is readily processed while affording scalability and performance. 
    more » « less
  2. Abstract Janus structures have unique properties due to their distinct functionalities on opposing faces, but have yet to be realized with flowing liquids. We demonstrate such Janus liquids with a customizable distribution of nanoparticles (NPs) throughout their structures by joining two aqueous streams of NP dispersions in an apolar liquid. Using this anisotropic integration platform, different magnetic, conductive, or non-responsive NPs can be spatially confined to opposite sides of the original interface using magnetic graphene oxide (mGO)/GO, Ti3C2Tx/GO, or GO suspensions. The resultant Janus liquids can be used as templates for versatile, responsive, and mechanically robust aerogels suitable for piezoresistive sensing, human motion monitoring, and electromagnetic interference (EMI) shielding with a tuned absorption mechanism. The EMI shields outperform their current counterparts in terms of wave absorption, i.e., SET ≈ 51 dB, SER ≈ 0.4 dB, and A = 0.91, due to their high porosity ranging from micro- to macro-scales along with non-interfering magnetic and conductive networks imparted by the Janus architecture. 
    more » « less
  3. Foundations for advancing wireless networks rely on the exploration of high-frequency bands ranging from 30 GHz to 300 GHz. FutureG technologies enable access to these bands with improved spectral efficiency and bandwidth. However, these trends also present significant challenges for future electronic systems. These are associated with design for higher gain and bandwidth to address higher pathlosses, interconnect losses between the transceiver and the antenna array, higher power consumption because of hardware complexity, electromagnetic interference (EMI), thermal management for higher power dissipation, limited manufacturability because of the new set of required materials, high functional density in multilayered substrates, and high production costs. Nanopackaging enables key solutions to many of these challenges by bringing advanced packaging and device materials, interfaces and package architectures to manage the complex system requirements for FutureG communications. These include nanoscale low-loss conductors, shielding structures, thermal interfaces and heat-spreaders, reconfigurable systems with tunable components, THz arrays and detectors, metasurfaces and seamless heterogeneous integration. This article reviews the key nanopackaging advances that are making FutureG communications a reality. 
    more » « less
  4. The quick progress in communication technologies demands superior electromagnetic interference (EMI) shielding materials. However, achieving a high shielding effectiveness (SE) with thin films, which is needed for microscale, flexible, and wearable devices, through absorption of EM radiation remains a challenge. 2D titanium carbide MXene, Ti3C2Tx, has been shown to efficiently reflect electromagnetic waves. In this paper, we investigated the electromagnetic shielding of ultrathin printed Ti3C2Tx films and recorded absorption up to 50% for 4 nm-thick films. This behavior is explained by impedance matching. Analysis of the sheet impedance in the X-band frequency range allows us to correlate the EMI shielding mechanism with the electrical conductivity measured within the same range. The average bulk in-plane conductivity for 4 to 40 nm-thick films reaches 106 S/m, while the average relaxation time is estimated at around 2.3 ps. Our figures of merit are similar to those reported for ultrathin metal films, such as gold, showing that an abundant MXene material can replace noble metals. We demonstrate that the MXene conductivity mechanism does not change from direct current to THz. The conventional method of reporting EMI SE is correlated with absolute values of transmitted, reflected, and absorbed power, which allows us to interpret previous results on MXene EMI shielding. Considering the easy deposition of thin MXenes films from solution onto a variety of surfaces, our findings offer an attractive alternative for shielding microscale devices and personal electronics. 
    more » « less
  5. Abstract Simulation and experimental studies are carried out on single‐layer and double‐layer embedded metal meshes (SLEMM and DLEMM) to assess their performance as transparent electromagnetic interference (EMI) shielding. The structures consist of silver meshes embedded in polyethylene terephthalate (PET). As a transparent electrode, SLEMMs exhibit a transparency of 82.7% and a sheet resistance of 0.61 Ωsq−1as well as 91.0% and 1.49 Ωsq−1. This performance corresponds to figures of merit of 3101 and 2620, respectively. The SLEMMs achieve 48.0 dB EMI shielding efficiency (SE) in the frequency range of 8–18 GHz (X‐ and Ku‐bands) with 91% visible transmission and 56.2 dB EMI SE with 82.7% visible transmission. Samples exhibit stable performance after 1000 bending cycles with a radius of curvature of 4 mm and 60 tape test cycles. DLEMMs consist of fabricating SLEMM on opposite sides of the substrate where the distance can be varied using a spacer. Simulations are performed to investigate how varying spacer distance between two layers of metal meshes influences the EMI SE. DLEMMs are fabricated and achieved an EMI SE of 77.7 dB with 81.7% visible transmission. SLEMMs and DLEMMs may have a wide variety of applications in aerospace, medical, and military applications. 
    more » « less