skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2052764

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 7, 2026
  2. Electromagnetic shielding often requires the integration of thick shielding structures in the form of metal casings, walls, or via arrays. These shields typically isolate the entire package from external or internal noise sources. In some cases, they also isolate components within the package. However, integration of shielding structures with the required performance creates miniaturization and fabrication constraints, and results in longer product development cycle times. To address these limitations, a novel approach is presented for component- and package-level shielding. This approach is based on electromagnetic interference (EMI) shield integration through a microassembly of prefabricated shields inside microslots in packages and printed circuit boards (PCBs). This approach eliminates many of the design and process constraints during the shield integration within packages. Various design options were considered to mitigate capacitive and inductive coupling between representative microstrip lines that act as aggressors and victims. Three types of EMI shielding architectures, U-shaped, inverted-L-shaped, and T-shaped, were investigated with 17.5 μm copper. The fabricated EMI shields were studied for their shield performance, both as a compartmental shield between specific components and as a conformal shield from external and internal noises. The role of the ground termination was also investigated to further optimize the shielding performance. 
    more » « less