The development of perovskite solar cells (PSCs) has ushered in a new era of solar technology, characterized by its exceptional efficiency and cost-effective production. However, the soft and fragile nature of perovskites makes module encapsulation challenging. Polyolefin elastomers (POEs) have been reported to be promising encapsulants for perovskite modules. However, little research exists on identifying criteria among different types of POEs as encapsulants. Here, two POEs with different morphologies were compared as encapsulants. The first POE crystallizes during encapsulation (crystal content ∼40%), and the resulting shrinkage or warpage leads to delamination, causing minimodule failure. In contrast, perovskite minimodules encapsulated with a mostly amorphous POE exhibited better reliability and reproducibility. The best perovskite minimodules passed the thermal cycling test for 240 cycles between −40 and 85 °C and the damp heat test for 1419 h, according to the IEC 61215 standard. This study highlights the importance of the morphology of encapsulants in achieving high-quality encapsulation. Published by the American Physical Society2024
more »
« less
Chiral-structured heterointerfaces enable durable perovskite solar cells
Mechanical failure and chemical degradation of device heterointerfaces can strongly influence the long-term stability of perovskite solar cells (PSCs) under thermal cycling and damp heat conditions. We report chirality-mediated interfaces based onR-/S-methylbenzyl-ammonium between the perovskite absorber and electron-transport layer to create an elastic yet strong heterointerface with increased mechanical reliability. This interface harnesses enantiomer-controlled entropy to enhance tolerance to thermal cycling–induced fatigue and material degradation, and a heterochiral arrangement of organic cations leads to closer packing of benzene rings, which enhances chemical stability and charge transfer. The encapsulated PSCs showed retentions of 92% of power-conversion efficiency under a thermal cycling test (−40°C to 85°C; 200 cycles over 1200 hours) and 92% under a damp heat test (85% relative humidity; 85°C; 600 hours).
more »
« less
- Award ID(s):
- 2305138
- PAR ID:
- 10509037
- Publisher / Repository:
- American Association for the Advancement of Science
- Date Published:
- Journal Name:
- Science
- Volume:
- 384
- Issue:
- 6698
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- 878 to 884
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Iodine-terminated self-assembled monolayer (I-SAM) was used in perovskite solar cells (PSCs) to achieve a 50% increase of adhesion toughness at the interface between the electron transport layer (ETL) and the halide perovskite thin film to enhance mechanical reliability. Treatment with I-SAM also increased the power conversion efficiency from 20.2% to 21.4%, reduced hysteresis, and improved operational stability with a projected T80 (time to 80% initial efficiency retained) increasing from ~700 hours to 4000 hours under 1-sun illumination and with continuous maximum power point tracking. Operational stability–tested PSC without SAMs revealed extensive irreversible morphological degradation at the ETL/perovskite interface, including voids formation and delamination, whereas PSCs with I-SAM exhibited minimal damage accumulation. This difference was attributed to a combination of a decrease in hydroxyl groups at the interface and the higher interfacial toughness.more » « less
-
Perovskite solar cells (PSCs) consisting of interfacial two- and three-dimensional heterostructures that incorporate ammonium ligand intercalation have enabled rapid progress toward the goal of uniting performance with stability. However, as the field continues to seek ever-higher durability, additional tools that avoid progressive ligand intercalation are needed to minimize degradation at high temperatures. We used ammonium ligands that are nonreactive with the bulk of perovskites and investigated a library that varies ligand molecular structure systematically. We found that fluorinated aniliniums offer interfacial passivation and simultaneously minimize reactivity with perovskites. Using this approach, we report a certified quasi–steady-state power-conversion efficiency of 24.09% for inverted-structure PSCs. In an encapsulated device operating at 85°C and 50% relative humidity, we document a 1560-hourT85at maximum power point under 1-sun illumination.more » « less
-
Despite the high-efficiency and low-cost prospect for perovskite solar cells, great concerns of lead toxicity and instability remain for this technology. Here, we report an encapsulation strategy for perovskite modules based on lead-adsorbing ionogel, which prevents lead leakage and withstand long-term stability tests. The ionogel layers integrated on both sides of modules enhance impact resistance. The self-healable ionogel can prevent water permeation into the perovskite layer and adsorb lead that might leak. The encapsulated devices pass the damp heat and thermal cycling accelerated stability tests according to International Electrotechnical Commission 61215 standard. The ionogel encapsulation reduces lead leakage to undetectable level after the hail-damaged module is soaked in water for 24 hours. Even being rolled over by a car followed by water soaking for 45 days, the ionogel encapsulation reduces lead leakage by three orders of magnitude. This work provides a strategy to simultaneously address lead leakage and stability for perovskite modules.more » « less
-
Abstract Surface passivation of perovskite solar cells (PSCs) using a low‐cost industrial organic pigment quinacridone (QA) is presented. The procedure involves solution processing a soluble derivative of QA,N,N‐bis(tert‐butyloxycarbonyl)‐quinacridone (TBOC‐QA), followed by thermal annealing to convert TBOC‐QA into insoluble QA. With halide perovskite thin films coated by QA, PSCs based on methylammonium lead iodide (MAPbI3) showed significantly improved performance with remarkable stability. A PCE of 21.1 % was achieved, which is much higher than 18.9 % recorded for the unmodified devices. The QA coating with exceptional insolubility and hydrophobicity also led to greatly enhanced contact angle from 35.6° for the pristine MAPbI3thin films to 77.2° for QA coated MAPbI3thin films. The stability of QA passivated MAPbI3perovskite thin films and PSCs were significantly enhanced, retaining about 90 % of the initial efficiencies after more than 1000 hours storage under ambient conditions.more » « less
An official website of the United States government

