skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Validity of a self-report measure of student learning in active learning statics courses
Although faculty-centered pedagogies are endemic across undergraduate science, technology, engineering, and mathematics education, there is increasing interest in active learning approaches. As discipline-based educational research in mechanical engineering continues to assess strategies for improving student learning and development, researchers need data collection tools that ameliorate issues of bias, minimize costs (e.g. time and student attention), and provide reliable data that has been validated within the disciplinary context. This study analyzes the validity and reliability of a commonly used survey, the Students’ Assessment of their Learning Gains (SALG). Data from seven Introduction to Statics courses at two universities were used to identify and confirm the latent constructs of the measure and to assess their reliability and criterion validity. Results demonstrated that four scales—active learning, concept knowledge and skills, self-efficacy, and feedback mechanisms—explain the majority of variation in the SALG survey in relation to the teaching and learning of statics. These scales were statistically validated and shown to accurately capture the criterion they represent. The primary advantage of the SALG is that it is less burdensome to students, who are only required to spend 10 to 15 min once at the end of the course to complete the survey, rather than spending more time with longer surveys or with those that require completion at multiple points in time. The tool is therefore also less disruptive to the class, which may make it more likely that faculty will be willing to include data collection efforts in their courses.  more » « less
Award ID(s):
2120915
PAR ID:
10509148
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
International Journal of Mechanical Engineering Education
Volume:
53
Issue:
4
ISSN:
0306-4190
Format(s):
Medium: X Size: p. 751-771
Size(s):
p. 751-771
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Engineering graduates need a deep understanding of key concepts in addition to technical skills to be successful in the workforce. However, traditional methods of instruction (e.g., lecture) do not foster deep conceptual understanding and make it challenging for students to learn the technical skills, (e.g., professional modeling software), that they need to know. This study builds on prior work to assess engineering students’ conceptual and procedural knowledge. The results provide an insight into how the use of authentic online learning modules influence engineering students’ conceptual knowledge and procedural skills. We designed online active learning modules to support and deepen undergraduate students’ understanding of key concepts in hydrology and water resources engineering (e.g., watershed delineation, rainfall-runoff processes, design storms), as well as their technical skills (e.g., obtaining and interpreting relevant information for a watershed, proficiency using HEC-HMS and HEC-RAS modeling tools). These modules integrated instructional content, real data, and modeling resources to support students’ solving of complex, authentic problems. The purpose of our study was to examine changes in students’ self-reported understanding of concepts and skills after completing these modules. The participants in this study were 32 undergraduate students at a southern U.S. university in a civil engineering senior design course who were assigned four of these active learning modules over the course of one semester to be completed outside of class time. Participants completed the Student Assessment of Learning Gains (SALG) survey immediately before starting the first module (time 1) and after completing the last module (time 2). The SALG is a modifiable survey meant to be specific to the learning tasks that are the focus of instruction. We created versions of the SALG for each module, which asked students to self-report their understanding of concepts and ability to implement skills that are the focus of each module. We calculated learning gains by examining differences in students’ self-reported understanding of concepts and skills from time 1 to time 2. Responses were analyzed using eight paired samples t-tests (two for each module used, concepts and skills). The analyses suggested that students reported gains in both conceptual knowledge and procedural skills. The data also indicated that the students’ self-reported gain in skills was greater than their gain in concepts. This study provides support for enhancing student learning in undergraduate hydrology and water resources engineering courses by connecting conceptual knowledge and procedural skills to complex, real-world problems. 
    more » « less
  2. null (Ed.)
    Engineering graduates need a deep understanding of key concepts in addition to technical skills to be successful in the workforce. However, traditional methods of instruction (e.g., lecture) do not foster deep conceptual understanding and make it challenging for students to learn the technical skills, (e.g., professional modeling software), that they need to know. This study builds on prior work to assess engineering students’ conceptual and procedural knowledge. The results provide an insight into how the use of authentic online learning modules influence engineering students’ conceptual knowledge and procedural skills. We designed online active learning modules to support and deepen undergraduate students’ understanding of key concepts in hydrology and water resources engineering (e.g., watershed delineation, rainfall-runoff processes, design storms), as well as their technical skills (e.g., obtaining and interpreting relevant information for a watershed, proficiency using HEC-HMS and HEC-RAS modeling tools). These modules integrated instructional content, real data, and modeling resources to support students’ solving of complex, authentic problems. The purpose of our study was to examine changes in students’ self-reported understanding of concepts and skills after completing these modules. The participants in this study were 32 undergraduate students at a southern U.S. university in a civil engineering senior design course who were assigned four of these active learning modules over the course of one semester to be completed outside of class time. Participants completed the Student Assessment of Learning Gains (SALG) survey immediately before starting the first module (time 1) and after completing the last module (time 2). The SALG is a modifiable survey meant to be specific to the learning tasks that are the focus of instruction. We created versions of the SALG for each module, which asked students to self-report their understanding of concepts and ability to implement skills that are the focus of each module. We calculated learning gains by examining differences in students’ self-reported understanding of concepts and skills from time 1 to time 2. Responses were analyzed using eight paired samples t-tests (two for each module used, concepts and skills). The analyses suggested that students reported gains in both conceptual knowledge and procedural skills. The data also indicated that the students’ self-reported gain in skills was greater than their gain in concepts. This study provides support for enhancing student learning in undergraduate hydrology and water resources engineering courses by connecting conceptual knowledge and procedural skills to complex, real-world problems. 
    more » « less
  3. As part of a National Science Foundation-funded initiative to completely transform the civil engineering undergraduate program at Clemson University, a capstone-like course sequence is being incorporated into the curriculum during the sophomore year. Clemson’s NSF Revolutionizing Engineering Departments (RED) program is called the Arch Initiative. Just as springers serve as the foundation stones of an arch, the new courses are called “Springers” because they serve as the foundations of the transformed curriculum. Through a project-based learning approach, Springer courses mimic the senior capstone experience by immersing students in a semester-long practical application of civil engineering, exposing them to concepts and tools in a way that challenges students to develop new knowledge that they will build on and use during their junior and senior years. In the 2019 spring semester, a pilot of the first Springer course introduced students to three civil engineering sub-disciplines: construction management, water resources, and transportation. The remaining sub-disciplines are covered in a follow-on Springer 2 pilot. The purpose of this paper is to describe all aspects of the Springer 1 course, including course content, teaching methods, faculty resources, and the design and results of a Student Assessment of Learning Gains (SALG) survey to assess students’ learning outcomes. The feedback from the SALG indicated positive attitudes towards course activities and content. Challenges for full-scale implementation of the Springer course sequence as a requirement in the transformed curriculum are also discussed. 
    more » « less
  4. The goal of the study presented here was to test the reliability and validity of faculty responses to the Strategies to Reduce Student Resistance (SRSR) a measure of Science, Engineering, and Mathematics university faculty use and motivation (self-efficacy and value) for using instructional strategies to reduce student resistance to active learning. The development of this measure will support research and interventions designed to support faculty implementation of active learning strategies. The scale examined here was adapted from a student version, developed and tested as part of a national study on student resistance to active learning in engineering programs. This project reveled a set of faculty behaviors which supported students’ positive response to active learning strategies (Authors, 2017). Although student perspectives on faculty behavior is important, we felt it was necessary to adapt the scale to measure faculty’s perspectives on the strategies they use and their motivation to use those strategies as part of their use of active learning in their classroom. 
    more » « less
  5. null (Ed.)
    Many university engineering programs require their students to complete a senior capstone experience to equip them with the knowledge and skills they need to succeed after graduation. Such capstone experiences typically integrate knowledge and skills learned cumulatively in the degree program, often engaging students in projects outside of the classroom. As part of an initiative to completely transform the civil engineering undergraduate program at Clemson University, a capstone-like course sequence is being incorporated into the curriculum during the sophomore year. Funded by a grant from the National Science Foundation’s Revolutionizing Engineering Departments (RED) program, this departmental transformation (referred to as the Arch initiative) is aiming to develop a culture of adaptation and a curriculum support for inclusive excellence and innovation to address the complex challenges faced by our society. Just as springers serve as the foundation stones of an arch, the new courses are called “Springers” because they serve as the foundations of the transformed curriculum. The goal of the Springer course sequence is to expose students to the “big picture” of civil engineering while developing student skills in professionalism, communication, and teamwork through real-world projects and hands-on activities. The expectation is that the Springer course sequence will allow faculty to better engage students at the beginning of their studies and help them understand how future courses contribute to the overall learning outcomes of a degree in civil engineering. The Springer course sequence is team-taught by faculty from both civil engineering and communication, and exposes students to all of the civil engineering subdisciplines. Through a project-based learning approach, Springer courses mimic capstone in that students work on a practical application of civil engineering concepts throughout the semester in a way that challenges students to incorporate tools that they will build on and use during their junior and senior years. In the 2019 spring semester, a pilot of the first of the Springer courses (Springer 1; n=11) introduced students to three civil engineering subdisciplines: construction management, hydrology, and transportation. The remaining subdisciplines will be covered in a follow-on Springer 2 pilot.. The project for Springer 1 involved designing a small parking lot for a church located adjacent to campus. Following initial instruction in civil engineering topics related to the project, students worked in teams to develop conceptual project designs. A design charrette allowed students to interact with different stakeholders to assess their conceptual designs and incorporate stakeholder input into their final designs. The purpose of this paper is to describe all aspects of the Springer 1 course, including course content, teaching methods, faculty resources, and the design and results of a Student Assessment of Learning Gains (SALG) survey to assess students’ learning outcomes. An overview of the Springer 2 course is also provided. The feedback from the SALG indicated positive attitudes towards course activities and content, and that students found interaction with project stakeholders during the design charrette especially beneficial. Challenges for full scale implementation of the Springer course sequence as a requirement in the transformed curriculum are also discussed. 
    more » « less