Abstract We study the production of$$D^0$$ meson inp+pandp-Pb collisions using the improved AMPT model considering both coalescence and independent fragmentation of charm quarks after the Cronin broadening is included. After a detailed discussion of the improvements implemented in the AMPT model for heavy quark production, we show that the modified AMPT model can provide a good description of$$D^0$$ meson spectra inp-Pb collisions, the$$Q_{\textrm{pPb}}$$ data at different centralities and$$R_{\textrm{pPb}}$$ data in both mid- and forward (backward) rapidities. We also studied the effects of nuclear shadowing and parton cascade on the rapidity dependence of$$D^{0}$$ meson production and$$R_{\textrm{pPb}}$$ . Our results indicate that using the same strength of the Cronin effect (i.e$$\delta $$ value) as that obtained from the mid-rapidity data leads to a considerable overestimation of the$$D^0$$ meson spectra and$$R_{\textrm{pPb}}$$ data at high$$p_{\textrm{T}}$$ in the backward rapidity. As a result, the$$\delta $$ is determined via a$$\chi ^2$$ fitting of the$$R_{\textrm{pPb}}$$ data across various rapidities. This work lays the foundation for a better understanding of cold-nuclear-matter (CNM) effects in relativistic heavy-ion collisions.
more »
« less
Active transport of a passive colloid in a bath of run-and-tumble particles
Abstract The dispersion of a passive colloid immersed in a bath of non-interacting and non-Brownian run-and-tumble microswimmers in two dimensions is analyzed using stochastic simulations and an asymptotic theory, both based on a minimal model of swimmer-colloid collisions characterized solely by frictionless steric interactions. We estimate the effective long-time diffusivity$${\mathscr {D}}$$ of the suspended colloid resulting from its interaction with the active bath, and elucidate its dependence on the level of activity (persistence length of swimmer trajectories), the mobility ratio of the colloid to a swimmer, and the number density of swimmers in the bath. We also propose a semi-analytical model for the colloid diffusivity in terms of the variance and correlation time of the net fluctuating active force on the colloid resulting from swimmer collisions. Quantitative agreement is found between numerical simulations and analytical results in the experimentally-relevant regime of low swimmer density, low mobility ratio, and high activity.
more »
« less
- Award ID(s):
- 1934199
- PAR ID:
- 10509193
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The elliptic flow$$(v_2)$$ of$${\textrm{D}}^{0}$$ mesons from beauty-hadron decays (non-prompt$${\textrm{D}}^{0})$$ was measured in midcentral (30–50%) Pb–Pb collisions at a centre-of-mass energy per nucleon pair$$\sqrt{s_{\textrm{NN}}} = 5.02$$ TeV with the ALICE detector at the LHC. The$${\textrm{D}}^{0}$$ mesons were reconstructed at midrapidity$$(|y|<0.8)$$ from their hadronic decay$$\mathrm {D^0 \rightarrow K^-\uppi ^+}$$ , in the transverse momentum interval$$2< p_{\textrm{T}} < 12$$ GeV/c. The result indicates a positive$$v_2$$ for non-prompt$${{\textrm{D}}^{0}}$$ mesons with a significance of 2.7$$\sigma $$ . The non-prompt$${{\textrm{D}}^{0}}$$ -meson$$v_2$$ is lower than that of prompt non-strange D mesons with 3.2$$\sigma $$ significance in$$2< p_\textrm{T} < 8~\textrm{GeV}/c$$ , and compatible with the$$v_2$$ of beauty-decay electrons. Theoretical calculations of beauty-quark transport in a hydrodynamically expanding medium describe the measurement within uncertainties.more » « less
-
QLBT: a linear Boltzmann transport model for heavy quarks in a quark-gluon plasma of quasi-particlesAbstract We develop a new heavy quark transport model, QLBT, to simulate the dynamical propagation of heavy quarks inside the quark-gluon plasma (QGP) created in relativistic heavy-ion collisions. Our QLBT model is based on the linear Boltzmann transport (LBT) model with the ideal QGP replaced by a collection of quasi-particles to account for the non-perturbative interactions among quarks and gluons of the hot QGP. The thermal masses of quasi-particles are fitted to the equation of state from lattice QCD simulations using the Bayesian statistical analysis method. Combining QLBT with our advanced hybrid fragmentation-coalescence hadronization approach, we calculate the nuclear modification factor$$R_\mathrm {AA}$$ and the elliptic flow$$v_2$$ ofDmesons at the Relativistic Heavy-Ion Collider and the Large Hadron Collider. By comparing our QLBT calculation to the experimental data on theDmeson$$R_\mathrm {AA}$$ and$$v_2$$ , we extract the heavy quark transport parameter$$\hat{q}$$ and diffusion coefficient$$D_\mathrm {s}$$ in the temperature range of$$1-4~T_\mathrm {c}$$ , and compare them with the lattice QCD results and other phenomenological studies.more » « less
-
A<sc>bstract</sc> Measurements of the production cross sections of prompt D0, D+, D*+,$$ {\textrm{D}}_{\textrm{s}}^{+} $$ ,$$ {\Lambda}_{\textrm{c}}^{+} $$ , and$$ {\Xi}_{\textrm{c}}^{+} $$ charm hadrons at midrapidity in proton-proton collisions at$$ \sqrt{s} $$ = 13 TeV with the ALICE detector are presented. The D-meson cross sections as a function of transverse momentum (pT) are provided with improved precision and granularity. The ratios ofpT-differential meson production cross sections based on this publication and on measurements at different rapidity and collision energy provide a constraint on gluon parton distribution functions at low values of Bjorken-x(10−5–10−4). The measurements of$$ {\Lambda}_{\textrm{c}}^{+} $$ ($$ {\Xi}_{\textrm{c}}^{+} $$ ) baryon production extend the measuredpTintervals down topT= 0(3) GeV/c. These measurements are used to determine the charm-quark fragmentation fractions and the$$ \textrm{c}\overline{\textrm{c}} $$ production cross section at midrapidity (|y|<0.5) based on the sum of the cross sections of the weakly-decaying ground-state charm hadrons D0, D+,$$ {\textrm{D}}_{\textrm{s}}^{+} $$ ,$$ {\Lambda}_{\textrm{c}}^{+} $$ ,$$ {\Xi}_{\textrm{c}}^0 $$ and, for the first time,$$ {\Xi}_{\textrm{c}}^{+} $$ , and of the strongly-decaying J/ψmesons. The first measurements of$$ {\Xi}_{\textrm{c}}^{+} $$ and$$ {\Sigma}_{\textrm{c}}^{0,++} $$ fragmentation fractions at midrapidity are also reported. A significantly larger fraction of charm quarks hadronising to baryons is found compared to e+e−and ep collisions. The$$ \textrm{c}\overline{\textrm{c}} $$ production cross section at midrapidity is found to be at the upper bound of state-of-the-art perturbative QCD calculations.more » « less
-
A<sc>bstract</sc> The production cross sections of D0, D+, and$$ {\Lambda}_{\textrm{c}}^{+} $$ hadrons originating from beauty-hadron decays (i.e. non-prompt) were measured for the first time at midrapidity in proton–lead (p–Pb) collisions at the center-of-mass energy per nucleon pair of$$ \sqrt{s_{\textrm{NN}}} $$ = 5.02 TeV. Nuclear modification factors (RpPb) of non-prompt D0, D+, and$$ {\Lambda}_{\textrm{c}}^{+} $$ are calculated as a function of the transverse momentum (pT) to investigate the modification of the momentum spectra measured in p–Pb collisions with respect to those measured in proton–proton (pp) collisions at the same energy. TheRpPbmeasurements are compatible with unity and with the measurements in the prompt charm sector, and do not show a significantpTdependence. ThepT-integrated cross sections andpT-integratedRpPbof non-prompt D0and D+mesons are also computed by extrapolating the visible cross sections down topT= 0. The non-prompt D-mesonRpPbintegrated overpTis compatible with unity and with model calculations implementing modification of the parton distribution functions of nucleons bound in nuclei with respect to free nucleons. The non-prompt$$ {\Lambda}_{\textrm{c}}^{+} $$ /D0and D+/D0production ratios are computed to investigate hadronisation mechanisms of beauty quarks into mesons and baryons. The measured ratios as a function ofpTdisplay a similar trend to that measured for charm hadrons in the same collision system.more » « less
An official website of the United States government
