skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simplified Protocol to Demonstrate Gene Expression in Nicotiana benthamiana Using an Agrobacterium-Mediated Transient Assay
Agrobacterium-mediated transient gene expression in Nicotiana benthamiana is widely used to study gene function in plants. One dramatic phenotype that is frequently screened for is cell death. Here, we present a simplified protocol for Agrobacterium-mediated transient gene expression by infiltration. Compared with current methods, the novel protocol can be done without a centrifuge or spectrometer, thereby suitable for K-12 outreach programs as well as rapidly identifying genes that induce cell death.  more » « less
Award ID(s):
2114833
PAR ID:
10509383
Author(s) / Creator(s):
; ;
Editor(s):
Shamu, Caroline
Publisher / Repository:
Fanglian He
Date Published:
Journal Name:
BIO-PROTOCOL
Volume:
14
Issue:
10
ISSN:
2331-8325
Page Range / eLocation ID:
1-8
Subject(s) / Keyword(s):
Agrobacterium, Nicotiana benthamiana, Agroinfiltration, Cell death, Gene expression, Ion leakage
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Goetz, H (Ed.)
    Agrobacterium-mediated transformation is an essential tool for functional genomics studies and crop improvements. Recently developed ternary vector systems, which consist of a T-DNA vector and a compatible virulence (vir) gene helper plasmid (ternary helper), demonstrated that including an additionalvirgene helper plasmid into disarmedAgrobacteriumstrains significantly improves T-DNA delivery efficiency, enhancing plant transformation. Here, we report the development of a new ternary helper and thymidine auxotrophicAgrobacteriumstrains to boostAgrobacterium-mediated plant transformation efficiency. AuxotrophicAgrobacteriumstrains are useful in reducingAgrobacteriumovergrowth after the co-cultivation period because they can be easily removed from the explants due to their dependence on essential nutrient supplementation. We generated thymidine auxotrophic strains from publicAgrobacteriumstrains EHA101, EHA105, EHA105D, and LBA4404. These strains exhibited thymidine-dependent growth in the bacterial medium, and transientGUSexpression assay using Arabidopsis seedlings showed that they retain similar T-DNA transfer capability as their original strains. Auxotrophic strains EHA105Thy- and LBA4404T1 were tested for maize B104 immature embryo transformation using our rapid transformation method, and both strains demonstrated comparable transformation frequencies to the control strain LBA4404Thy-. In addition, our new ternary helper pKL2299A, which carries thevirAgene from pTiBo542 in addition to othervirgene operons (virG,virB,virC,virD,virE, andvirJ), demonstrated consistently improved maize B104 immature embryo transformation frequencies compared to the original version of pKL2299 (33.3% vs 25.6%, respectively). Therefore, our improvedAgrobacteriumsystem, including auxotrophic disarmedAgrobacteriumstrains and a new ternary helper plasmid, can be useful for enhancing plant transformation and genome editing applications. 
    more » « less
  2. Abstract The programmed cell death protein 1 (PD‐1) signaling pathway is a major source of dampened T cell activity in the tumor microenvironment. While clinical approaches to inhibiting the PD‐1 pathway using antibody blockade have been broadly successful, these approaches lead to widespread PD‐1 suppression, increasing the risk of autoimmune reactions. This study reports the development of an ionizable lipid nanoparticle (LNP) platform for simultaneous therapeutic gene expression and RNA interference (RNAi)‐mediated transient gene knockdown in T cells. In developing this platform, interesting interactions are observed between the two RNA cargoes when co‐encapsulated, leading to improved expression and knockdown characteristics compared to delivering either cargo alone. This messenger RNA (mRNA)/small interfering RNA (siRNA) co‐delivery platform is adopted to deliver chimeric antigen receptor (CAR) mRNA and siRNA targeting PD‐1 to primary human T cells ex vivo and strong CAR expression and PD‐1 knockdown are observed without apparent changes to overall T cell activation state. This delivery platform shows great promise for transient immune gene modulation for a number of immunoengineering applications, including the development of improved cancer immunotherapies. 
    more » « less
  3. Abstract Agrobacterium‐mediated transient expression methods are widely used to study gene function in both model and non‐model plants. Using a dual‐luciferase assay, we quantified the effect ofAgrobacterium‐infiltration parameters on the transient transformation efficiency ofCatharanthus roseusseedlings. We showed that transformation efficiency is highly sensitive to seedling developmental state and a pre‐ and post‐infiltration dark incubation and is less sensitive to theAgrobacteriumgrowth stage. For example, 5 versus 6 days of germination in the dark increased seedling transformation efficiency by seven‐ to eight‐fold while a dark incubation pre‐ and post‐infiltration increased transformation efficiency by five‐ to 13‐fold.Agrobacteriumin exponential compared with stationary phase increased transformation efficiency by two‐fold. Finally, we quantified the variation in ourAgrobacterium‐infiltration method in replicate infiltrations and experiments. Within a given experiment, significant differences of up to 2.6‐fold in raw firefly luciferase (FLUC) and rawRenillaluciferase (RLUC) luminescence occurred in replicate infiltrations. These differences were significantly reduced when FLUC was normalized to RLUC values, highlighting the utility of including a reference reporter to minimize false positives. Including a second experimental replicate further reduced the potential for false positives. This optimization and quantitative validation ofAgrobacteriuminfiltration inC. roseusseedlings will facilitate the study of this important medicinal plant and will expand the application ofAgrobacterium‐mediated transformation methods in other plant species. 
    more » « less
  4. Recent advancements in molecular tools for plant genetic engineering, particularly CRISPR-based technologies, have created new opportunities for targeted genome editing. However, applying these tools remains challenging in crop species such as sunflower (Helianthus annuus) that lack established and effective transformation pipelines, including transient reagent delivery methods for functional screening and validation of genetic engineering tools. To address this gap, three major reagent delivery platforms, namely protoplast transfection, leaf infiltration, and Agrobacterium-mediated tissue co-culture, were systematically adapted and assessed for use in sunflower seedlings. While each method enabled successful reagent delivery, they differed in their levels of scalability and efficiency. With these platforms, delivery by different Agrobacterium strains and the effectiveness of various reporter gene expression cassettes were compared to define the most experimentally suitable components for different applications in sunflowers. Together, these results establish a foundational toolkit for transient functional testing in sunflower and pave the way for more sophisticated genetic engineering approaches in this agriculturally important oilseed, confectionary seed, and horticultural crop. 
    more » « less
  5. The ability to precisely engineerAgrobacteriumstrains is crucial for advancing their utility in plant biotechnology. We recently implemented the CRISPR RNA-guided transposase system, INTEGRATE, as an efficient tool for genetic modification inAgrobacterium. Despite its promise, the practical application of INTEGRATE inAgrobacteriumstrain engineering remains underexplored. Here, we present a standardized and optimized workflow that enables researchers to harness INTEGRATE for targeted genome modifications. By addressing common challenges, such as crRNA design, transformation efficiency, and vector eviction, this protocol expands the genetic toolkit available forAgrobacterium, facilitating both functional genomics and strain development for plant transformation. As a demonstration, we domesticatedAgrobacterium rhizogenesK599 strain by deleting the 15-kb T-DNA region from its root-inducing plasmid pRi2659 and inactivating a thymidylate synthase gene to render the strain auxotrophic for thymidine. The protocol provides detailed guidance for each step, including target site selection, crRNA spacer cloning,Agrobacteriumtransformation, screening for targeted insertion and Cre/loxP-mediated deletion, and vector removal. This resource will empower new users to perform efficient and reproducible genome engineering inAgrobacteriumusing the INTEGRATE system, paving the way for broader adoption and innovation in plant biotechnology. 
    more » « less