skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2027

Title: Establishing Reagent Testing Platforms for Functional Analyses in Sunflower
Recent advancements in molecular tools for plant genetic engineering, particularly CRISPR-based technologies, have created new opportunities for targeted genome editing. However, applying these tools remains challenging in crop species such as sunflower (Helianthus annuus) that lack established and effective transformation pipelines, including transient reagent delivery methods for functional screening and validation of genetic engineering tools. To address this gap, three major reagent delivery platforms, namely protoplast transfection, leaf infiltration, and Agrobacterium-mediated tissue co-culture, were systematically adapted and assessed for use in sunflower seedlings. While each method enabled successful reagent delivery, they differed in their levels of scalability and efficiency. With these platforms, delivery by different Agrobacterium strains and the effectiveness of various reporter gene expression cassettes were compared to define the most experimentally suitable components for different applications in sunflowers. Together, these results establish a foundational toolkit for transient functional testing in sunflower and pave the way for more sophisticated genetic engineering approaches in this agriculturally important oilseed, confectionary seed, and horticultural crop.  more » « less
Award ID(s):
1759942 2447866
PAR ID:
10656622
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Plants
Volume:
15
Issue:
1
ISSN:
2223-7747
Page Range / eLocation ID:
89
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Goetz, H (Ed.)
    Agrobacterium-mediated transformation is an essential tool for functional genomics studies and crop improvements. Recently developed ternary vector systems, which consist of a T-DNA vector and a compatible virulence (vir) gene helper plasmid (ternary helper), demonstrated that including an additionalvirgene helper plasmid into disarmedAgrobacteriumstrains significantly improves T-DNA delivery efficiency, enhancing plant transformation. Here, we report the development of a new ternary helper and thymidine auxotrophicAgrobacteriumstrains to boostAgrobacterium-mediated plant transformation efficiency. AuxotrophicAgrobacteriumstrains are useful in reducingAgrobacteriumovergrowth after the co-cultivation period because they can be easily removed from the explants due to their dependence on essential nutrient supplementation. We generated thymidine auxotrophic strains from publicAgrobacteriumstrains EHA101, EHA105, EHA105D, and LBA4404. These strains exhibited thymidine-dependent growth in the bacterial medium, and transientGUSexpression assay using Arabidopsis seedlings showed that they retain similar T-DNA transfer capability as their original strains. Auxotrophic strains EHA105Thy- and LBA4404T1 were tested for maize B104 immature embryo transformation using our rapid transformation method, and both strains demonstrated comparable transformation frequencies to the control strain LBA4404Thy-. In addition, our new ternary helper pKL2299A, which carries thevirAgene from pTiBo542 in addition to othervirgene operons (virG,virB,virC,virD,virE, andvirJ), demonstrated consistently improved maize B104 immature embryo transformation frequencies compared to the original version of pKL2299 (33.3% vs 25.6%, respectively). Therefore, our improvedAgrobacteriumsystem, including auxotrophic disarmedAgrobacteriumstrains and a new ternary helper plasmid, can be useful for enhancing plant transformation and genome editing applications. 
    more » « less
  2. Summary Agrobacterium tumefaciens, the causal agent of plant crown gall disease, has been widely used to genetically transform many plant species. The inter‐kingdom gene transfer capability madeAgrobacteriuman essential tool and model system to study the mechanism of exporting and integrating a segment of bacterial DNA into the plant genome. However, many biological processes such asAgrobacterium‐host recognition and interaction are still elusive. To accelerate the understanding of this important plant pathogen and further improve its capacity in plant genetic engineering, we adopted a CRISPR RNA‐guided integrase system forAgrobacteriumgenome engineering. In this work, we demonstrate thatINsertion ofTransposableElements byGuideRNA–AssistedTargEting (INTEGRATE) can efficiently generate DNA insertions to enable targeted gene knockouts. In addition, in conjunction with Cre‐loxPrecombination system, we achieved precise deletions of large DNA fragments. This work provides new genetic engineering strategies forAgrobacteriumspecies and their gene functional analyses. 
    more » « less
  3. The ability to precisely engineerAgrobacteriumstrains is crucial for advancing their utility in plant biotechnology. We recently implemented the CRISPR RNA-guided transposase system, INTEGRATE, as an efficient tool for genetic modification inAgrobacterium. Despite its promise, the practical application of INTEGRATE inAgrobacteriumstrain engineering remains underexplored. Here, we present a standardized and optimized workflow that enables researchers to harness INTEGRATE for targeted genome modifications. By addressing common challenges, such as crRNA design, transformation efficiency, and vector eviction, this protocol expands the genetic toolkit available forAgrobacterium, facilitating both functional genomics and strain development for plant transformation. As a demonstration, we domesticatedAgrobacterium rhizogenesK599 strain by deleting the 15-kb T-DNA region from its root-inducing plasmid pRi2659 and inactivating a thymidylate synthase gene to render the strain auxotrophic for thymidine. The protocol provides detailed guidance for each step, including target site selection, crRNA spacer cloning,Agrobacteriumtransformation, screening for targeted insertion and Cre/loxP-mediated deletion, and vector removal. This resource will empower new users to perform efficient and reproducible genome engineering inAgrobacteriumusing the INTEGRATE system, paving the way for broader adoption and innovation in plant biotechnology. 
    more » « less
  4. Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than thirty years of technological advances. Genome editing provides new opportunities to enhance crop productivity, but relies on genetic transformation and plant regeneration, which are bottlenecks in the process. Herein we review the state of plant transformation and point to innovations needed to enable genome editing in crops. Plant tissue culture methods need optimization and simplification for efficiency and minimize time in culture. Currently, specialized facilities exist for crop transformation. Single cell and robotic techniques should be developed for high throughput genomic screens. Utilization of plant genes involved in developmental reprogramming, wound response, and/or homologous recombination could boost recovery of transformed plants. Engineering universal Agrobacterium strains and recruitment of other microbes, such as Ensifer or Rhizobium, could facilitate delivery of DNA and proteins into plant cells. Synthetic biology should be employed for de novo design of transformation systems. Genome editing is a potential game-changer in crop genetics when plant transformation systems are optimized. 
    more » « less
  5. Abstract The Targeting Induced Local Lesions in Genomes (TILLING) technology is a reverse genetic strategy broadly applicable to every kind of genome and represents an attractive tool for functional genomic and agronomic applications. It consists of chemical random mutagenesis followed by high-throughput screening of point mutations in targeted genomic regions. Although multiple methods for mutation discovery in amplicons have been described, next-generation sequencing (NGS) is the tool of choice for mutation detection because it quickly allows for the analysis of a large number of amplicons. The aim of the present work was to screen a previously generated sunflower TILLING population and identify alterations in genes involved in several important and complex physiological processes. Twenty-one candidate sunflower genes were chosen as targets for the screening. The TILLING by sequencing strategy allowed us to identify multiple mutations in selected genes and we subsequently validated 16 mutations in 11 different genes through Sanger sequencing. In addition to addressing challenges posed by outcrossing, our detection and validation of mutations in multiple regulatory loci highlights the importance of this sunflower population as a genetic resource. 
    more » « less