Recent research in the social sciences has identified situations in which small changes in the way that information is provided to consumers can have large aggregate effects on behavior. This has been promoted in popular media in areas of public health and wellness, but its application to other areas has not been broadly studied. This paper presents a simple model which expresses the effect of providing commuters with carefully-curated information regarding aggregate traffic “slowdowns” on the various roads in a transportation network. Much of the work on providing information to commuters focuses specifically on travel-time information. However, the model in the present paper allows a system planner to provide slowdown information as well; that is, commuters are additionally told how much slower each route is as compared to its uncongested state. We show that providing this additional information can improve equilibrium routing efficiency when compared to the case when commuters are only given information about travel time, but that these improvements in congestion are not universal. That is, transportation networks exist on which any provision of slowdown information can harm equilibrium congestion. In addition, this paper illuminates a deep connection between the effects of commuter slowdown-sensitivity and the study of marginal-cost pricing and altruism in congestion games.
more »
« less
Optimal capacity sizing of park‐and‐ride lots with information aware commuters
We study capacity sizing of park‐and‐ride lots that offer services to commuters sensitive to congestion and parking availability information. The goal is to determine parking lot capacities that maximize the total social welfare for commuters whose parking lot choices are predicted using the multinomial logit model. We formulate the problem as a nonconvex nonlinear program that involves a lower and an upper bound on each lot's capacity, and a fixed‐point constraint reflecting the effects of parking information and congestion on commuters' lot choices. We show that except for at most one lot, the optimal capacity of each lot takes one of three possible values. Based on analytical results, we develop a one‐variable search algorithm to solve the model. We learn from numerical results that the optimal capacity of a lot with a high intrinsic utility tends to be equal to the upper bound. By contrast, a lot with a low or moderate‐sized intrinsic utility tends to attain an optimal capacity on its effective lower bound. We evaluate the performance of the optimal solution under different choice scenarios of commuters who are shared with real‐time parking information. We learn that commuters are better off in an average choice scenario when both the effects of parking information and congestion are considered in the model than when either effect is ignored from the model.
more »
« less
- Award ID(s):
- 2127779
- PAR ID:
- 10509395
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Production and Operations Management
- Volume:
- 32
- Issue:
- 11
- ISSN:
- 1059-1478
- Page Range / eLocation ID:
- 3614 to 3633
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Spot-level parking availability information (the availability of each spot in a parking lot) is in great demand, as it can help reduce time and energy waste while searching for a parking spot. In this article, we propose a crowdsensing system called SpotE that can provide spot-level availability in a parking lot using drivers’ smartphone sensors. SpotE only requires the sensor data from drivers’ smartphones, which avoids the high cost of installing additional sensors and enables large-scale outdoor deployment. We propose a new model that can use the parking search trajectory and final destination (e.g., an exit of the parking lot) of a single driver in a parking lot to generate the probability profile that contains the probability of each spot being occupied in a parking lot. To deal with conflicting estimation results generated from different drivers, due to the variance in different drivers’ parking behaviors, a novel aggregation approach SpotE-TD is proposed. The proposed aggregation method is based on truth discovery techniques and can handle the variety in Quality of Information of different vehicles. We evaluate our proposed method through a real-life deployment study. Results show that SpotE-TD can efficiently provide spot-level parking availability information with a 20% higher accuracy than the state-of-the-art.more » « less
-
The goal of this study was to analyze the impact of private autonomous vehicles (PAVs), specifically their near-activity location travel patterns, on vehicle miles traveled (VMT). The study proposes an integrated mode choice and simulation-based parking assignment model, along with an iterative solution approach, to analyze the impacts of PAVs on VMT, mode choice, parking lot usage, and other system performance measures. The dynamic simulation-based parking assignment model determines the parking location choice of each traveler as a function of the spatial–temporal demand for parking from the mode choice model, whereas the multinomial logit mode choice model determines mode splits based on the costs and service quality of each travel mode coming, in part, from the parking assignment model. The paper presents a case study to illustrate the power of the modeling framework. The case study varies the percentage of persons with a private vehicle (PV) who own a PAV versus a private conventional vehicle (PCV). The results indicated that PAV owners traveled an extra 0.11 to 1.51 mi compared with PCV owners on average, and the PV mode share was significantly higher for PAV owners. Therefore, as PCVs are converted into PAVs in the future, the results indicate substantial increases in VMT near activity destinations. However, the results also indicated that adjusting parking fees and redistributing parking lot capacities could reduce VMT. The significant increase in VMT from PAVs implies that planners should develop policies to reduce PAV deadheading miles near activity locations, as the automated era comes closer.more » « less
-
The smart parking industry continues to evolve as an increasing number of cities struggle with traffic congestion and inadequate parking availability. For urban dwellers, few things are more irritating than anxiously searching for a parking space. Research results show that as much as 30% of traffic is caused by drivers driving around looking for parking spaces in congested city areas. There has been considerable activity among researchers to develop smart technologies that can help drivers find a parking spot with greater ease, not only reducing traffic congestion but also the subsequent air pollution. Many existing solutions deploy sensors in every parking spot to address the automatic parking spot detection problems. However, the device and deployment costs are very high, especially for some large and old parking structures. A wide variety of other technological innovations are beginning to enable more adaptable systems-including license plate number detection, smart parking meter, and vision-based parking spot detection. In this paper, we propose to design a more adaptable and affordable smart parking system via distributed cameras, edge computing, data analytics, and advanced deep learning algorithms. Specifically, we deploy cameras with zoom-lens and motorized head to capture license plate numbers by tracking the vehicles when they enter or leave the parking lot; cameras with wide angle fish-eye lens will monitor the large parking lot via our custom designed deep neural network. We further optimize the algorithm and enable the real-time deep learning inference in an edge device. Through the intelligent algorithm, we can significantly reduce the cost of existing systems, while achieving a more adaptable solution. For example, our system can automatically detect when a car enters the parking space, the location of the parking spot, and precisely charge the parking fee and associate this with the license plate number.more » « less
-
We study the \emph{offline reinforcement learning} (offline RL) problem, where the goal is to learn a reward-maximizing policy in an unknown \emph{Markov Decision Process} (MDP) using the data coming from a policy $$\mu$$. In particular, we consider the sample complexity problems of offline RL for the finite horizon MDPs. Prior works derive the information-theoretical lower bounds based on different data-coverage assumptions and their upper bounds are expressed by the covering coefficients which lack the explicit characterization of system quantities. In this work, we analyze the \emph{Adaptive Pessimistic Value Iteration} (APVI) algorithm and derive the suboptimality upper bound that nearly matches $$ O\left(\sum_{h=1}^H\sum_{s_h,a_h}d^{\pi^\star}_h(s_h,a_h)\sqrt{\frac{\mathrm{Var}_{P_{s_h,a_h}}{(V^\star_{h+1}+r_h)}}{d^\mu_h(s_h,a_h)}}\sqrt{\frac{1}{n}}\right). $$ We also prove an information-theoretical lower bound to show this quantity is required under the weak assumption that $$d^\mu_h(s_h,a_h)>0$$ if $$d^{\pi^\star}_h(s_h,a_h)>0$$. Here $$\pi^\star$$ is a optimal policy, $$\mu$$ is the behavior policy and $$d(s_h,a_h)$$ is the marginal state-action probability. We call this adaptive bound the \emph{intrinsic offline reinforcement learning bound} since it directly implies all the existing optimal results: minimax rate under uniform data-coverage assumption, horizon-free setting, single policy concentrability, and the tight problem-dependent results. Later, we extend the result to the \emph{assumption-free} regime (where we make no assumption on $$ \mu$$) and obtain the assumption-free intrinsic bound. Due to its generic form, we believe the intrinsic bound could help illuminate what makes a specific problem hard and reveal the fundamental challenges in offline RL.more » « less
An official website of the United States government

