Tectonic processes drive the evolution of basins through local and regional changes in topographic relief, which have long-term effects on mammalian richness and distri- bution. Mammals respond to the resulting changes in landscape and climate through evolution, shifts in geographic range, and by altering their community composition. Here, we evaluate the relationship between tectonic episodes and the diversification his- tory of fossil mammals in the Miocene Dove Spring Formation (12.5–8.5 Ma) of southern California, USA. This formation contains a rich fossil record of mammals and other ver- tebrates as well as structural and sedimento- logical evidence for tectonic episodes of basin extension, rotation, and translation. We used several methods to compare the fossil record to the tectonic history of the Dove Spring Formation. We updated the formation’s geochronology to incorporate current radiometric dating standards and measured additional stratigraphic sections to refine the temporal resolution of large mammal (>1 kg) fossil localities to 200-kyr (or shorter) intervals. Observed species rich- ness over time follows the same trend as the number of localities and specimens, suggest- ing that richness reflects sampling intensity. Estimates of stratigraphic ranges with 80% confidence intervals were used to conduct per capita diversification analysis and a like- lihood approach to changes in faunal com- position from one time interval to the next. While edge effects influence time bins at the beginning and end of the study interval, we found changes in diversification rates and faunal composition that are not solely linked to preservation. Several rare species appear at 10.5 Ma and persist through the top of the formation despite variable preserva- tion rates. Changes in faunal composition at 12.1 Ma and 10.5 Ma are not associated with elevated preservation rates, which indicates that some faunal changes are not primarily driven by sampling effort. The lower por- tion of the formation is characterized by high origination rates and long residence times. The upper portion has high per capita ex- tinction rates that increased in magnitude as basin rotation and translation progressed from 10.5 Ma. The greatest change in faunal composition coincided with basin rotation and translation that interrupted a long-run- ning extensional period. Tectonics played key roles in the diversity of mammals by deter- mining fossil productivity and shaping the landscapes that they inhabited. 
                        more » 
                        « less   
                    
                            
                            Mammalian faunal change of the Miocene Dove Spring Formation, Mojave region, southern California, USA, in relation to tectonic history
                        
                    
    
            Tectonic processes drive the evolution of basins through local and regional changes in topographic relief, which have long-term effects on mammalian richness and distribution. Mammals respond to the resulting changes in landscape and climate through evolution, shifts in geographic range, and by altering their community composition. Here, we evaluate the relationship between tectonic episodes and the diversification history of fossil mammals in the Miocene Dove Spring Formation (12.5−8.5 Ma) of southern California, USA. This formation contains a rich fossil record of mammals and other vertebrates as well as structural and sedimentological evidence for tectonic episodes of basin extension, rotation, and translation. We used several methods to compare the fossil record to the tectonic history of the Dove Spring Formation. We updated the formation’s geochronology to incorporate current radiometric dating standards and measured additional stratigraphic sections to refine the temporal resolution of large mammal (>1 kg) fossil localities to 200-kyr (or shorter) intervals. Observed species richness over time follows the same trend as the number of localities and specimens, suggesting that richness reflects sampling intensity. Estimates of stratigraphic ranges with 80% confidence intervals were used to conduct per capita diversification analysis and a likelihood approach to changes in faunal composition from one time interval to the next. While edge effects influence time bins at the beginning and end of the study interval, we found changes in diversification rates and faunal composition that are not solely linked to preservation. Several rare species appear at 10.5 Ma and persist through the top of the formation despite variable preservation rates. Changes in faunal composition at 12.1 Ma and 10.5 Ma are not associated with elevated preservation rates, which indicates that some faunal changes are not primarily driven by sampling effort. The lower portion of the formation is characterized by high origination rates and long residence times. The upper portion has high per capita extinction rates that increased in magnitude as basin rotation and translation progressed from 10.5 Ma. The greatest change in faunal composition coincided with basin rotation and translation that interrupted a long-running extensional period. Tectonics played key roles in the diversity of mammals by determining fossil productivity and shaping the landscapes that they inhabited. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1655720
- PAR ID:
- 10509403
- Publisher / Repository:
- Geological Society of America
- Date Published:
- Journal Name:
- Geological Society of America Bulletin
- ISSN:
- 0016-7606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)The fossil record of macroscelidean mammals is notoriously patchy, with a significant spatial and temporal gap separating faunas from the early Oligocene localities of northern Africa and the early Miocene localities of eastern and southern Africa. Here we describe fossil macroscelideans representing Myohyracinae and Rhynchocyoninae recovered from a rift-fill sequence of richly fossiliferous sandstones in the late Oligocene Nsungwe Formation in the Rukwa Rift Basin of southwestern Tanzania. Radiometrically dated to 25.2 Ma, a new Palaeogene myohyracine taxon (Rukwasengi butleri) is represented by a partial maxilla (RRBP 05409) preserving a lightly worn M2-M3. The M2 exhibits a less hypsodont and mesiodistally elongate morphology than the early Miocene Myohyrax oswaldi, and the three-rooted M3 exhibits a tiny mesially positioned fossette. A new rhynchocyonine (Oligorhynchocyon songwensis) is represented by specimens more brachyodont than the early Miocene Miorhynchocyon. Taken together these finds document a rare window into macroscelidean evolutionary history with diversification of the group near the Palaeogene-Neogene Transition (PNT). Continued exploration offers a refined perspective on mid-Cenozoic faunal and ecosystem dynamics on continental Africa, expanding opportunities for recognising trends in palaeobiological diversity across habitat types and through time.more » « less
- 
            Mammals rose to prominence in terrestrial ecosystems after the Cretaceous–Paleogene mass extinction, but the mammalian lineages characteristic of Paleogene faunas began their evolutionary and ecological diversification in the Late Cretaceous, stimulated by the rise of angiosperms (flowering plants) according to the preeminent hy- pothesis. The Cretaceous rise of mammals is part of a larger expansion in biodiversity on land that has been termed the Cretaceous (or Angiosperm) Terrestrial Revolution, but the mechanisms underlying its initiation remain opaque. Here, we review data from the fossil and rock records of western North America—due to its relatively continuous fossil record and complete chronology of mountain-building events—to explore the role that tectonism might have played in catalyzing the rise of modern-aspect terrestrial biodiversity, especially that of mammals and angiosperms. We highlight that accelerated increases in mammal and angiosperm species richness in the Late Cretaceous, ca. 100–75 Ma, track the acceleration of tectonic processes that formed the North American Cordillera and occurred during the ‘middle-Cretaceous greenhouse’ climate. This rapid increase in both mammal and angiosperm diversity also occurred during the zenith of Western Interior Seaway trans- gression, a period when the availability of lowland habitats was at its minimum, and oscillatory transgression- regression cycles would have frequently forced upland range shifts among lowland populations. These changes to both landscapes and climates have all been linked to an abrupt, global tectonic-plate ‘reorganization’ that occurred ca. 100 Ma. That mammals and angiosperms both increased in species richness during this interval does not appear to be a taphonomic artifact—some of the largest spikes in diversity occur when the available mammal-bearing fossil localities are sparse. Noting that mountainous regions are engines for generating biodi- versity, especially in warm climates, we propose that the Cretaceous/Angiosperm Terrestrial Revolution was ultimately catalyzed by accelerated tectonism and enhanced via cascading changes to landscapes and climate. In the fossil record of individual basins across western North America, we predict that (1) increases in mammalian diversity through the Late Cretaceous should be positively correlated with rates of tectonic uplift, which we infer to be a proxy for topographic relief, and are attended by increased climate heterogeneity, (2) the diversity of mountain-proximal mammalian assemblages should exceed that of coeval mountain-distal assemblages, espe- cially in the latest Cretaceous, and (3) endemism should increase from the latest Cretaceous to early Paleogene as Laramide mountain belts fragmented the Western Interior. Empirical tests of these predictions will require increased fossil collecting in under-sampled regions and time intervals, description and systematic study of existing collections, and basin-scale integration of geological and paleontological data. Testing these predictions will further our understanding of the coevolutionary processes linking tectonics, climate, and life throughout Earth history.more » « less
- 
            Tectonic activity can drive speciation and sedimentation, potentially causing the fossil and rock records to share common patterns through time. The Basin and Range of western North America arose through widespread extension and collapse of topographic highlands in the Miocene, creating numerous basins with rich mammalian fossil records. We analyzed patterns of mammalian species richness from 36 to 0 million years ago in relation to the history of sediment accumulation to test whether intervals of high species richness corresponded with elevated sediment accumulation and fossil burial in response to tectonic deformation. We found that the sedimentary record of the Basin and Range tracks the tectonic evolution of landscapes, whereas species-richness trends reflect actual increased richness in the Miocene rather than increased fossil burial. The sedimentary record of the region broadly determines the preservation of the fossil record but does not drive the Miocene peak in mammalian species richness.more » « less
- 
            null (Ed.)The Barstow Formation in the Mojave region of California was deposited in an extensional-basin setting of the Basin and Range province and preserves diverse middle Miocene mammalian assemblages. Six facies associations represent the dominant depositional environments in the basin, which changed through time from alluvial-fan and playa-dominated settings to floodplains and spring-fed wetlands. The majority of fossil localities and specimens occur in later-forming facies associations. We analyzed the taphonomic characteristics of fossil assemblages to test whether basin-scale facies associations or locality-scale facies exert more control on the preservational features of mammalian assemblages through the formation. We documented the facies settings of 47 vertebrate localities in the field in order to interpret depositional setting and the mode of accumulation for fossil assemblages. We evaluated skeletal material in museum collections for taphonomic indicators, including weathering stage, original bone-damage patterns, hydraulic equivalence, and skeletal-element composition. We evaluated four alternative modes of accumulation, including attritional accumulation on the land surface, accumulation by fluvial processes, carnivore or scavenger accumulations, and mass-death events. The majority of localities represent attritional accumulations at sites of long-term mortality in channel-margin, abandoned-channel, poorly drained floodplain, and ephemeral-wetland settings. Skeletal-element composition and taphonomic characteristics varied among facies, indicating an important role for depositional setting and landscape position on fossil-assemblage preservation. We find that locality-scale facies have a greater influence on the taphonomic characteristics of fossil assemblages; the taphonomy of each facies association is influenced by the facies that compose it. The facies composition and distribution within facies associations change through the formation, with a greater variety of depositional settings forming later in the history of the basin. Heterogeneous landscapes present more settings for fossil accumulation, contributing to the increase in fossil occurrence through the depositional history of the formation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    