skip to main content


This content will become publicly available on May 24, 2025

Title: The case for metacognition support in a flipped STEM course

The metacognitive strategies of planning, monitoring, and evaluating can be promoted through systematic reflection to drive self-directed, lifelong learning. This article reports on a three-year study on systematic written reflection within an undergraduate Fluid Mechanics course to promote planning, monitoring, and evaluation. Students were prompted weekly to reflect on their in-class problem-solving, classroom and exam preparation, performance, behaviors, and learning in a flipped classroom at a large southeastern U.S. university. In addition, they received intentional instruction on how to plan, monitor, and evaluate their problem-solving during class. To enable a comparative assessment, a flipped classroom without these interventions was also implemented as a non-experimental cohort. The cohorts were compared using a final exam, concept inventory, and the Metacognitive Activities Inventory (MCAI). The MCAI indicated a significantly higher positive change (pre- to post-course) in self-regulatory behavior for the experimental cohort ( p = 0.037). The weekly reflections were studied using an inductive content analysis to assess students’ self-regulatory behaviors. They were also used to investigate statistical associations between reflection content and course outcomes. This revealed that academic self-discipline via planning, monitoring one's work, or being careful and diligent may be as aligned with course performance in STEM as is practice with the problem-solving itself. The effects for the final exam in the experimental cohort were positive overall as well as statistically or practically significant for various demographic strata. These results provided evidence for the potential enhancement of course performance with metacognition support. A positive shift in students’ perspectives regarding the value of the reflection questions was observed throughout the study. Therefore, as an implementation guide for other educators, the reflection questions and any changes made in posing them to students are discussed chronologically. Overall, the study points to the desirability of providing metacognition support in a STEM course.

 
more » « less
Award ID(s):
2020504 2019664
PAR ID:
10509520
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
International Journal of Mechanical Engineering Education
ISSN:
0306-4190
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. When students repeatedly reflect, it can enhance their metacognitive abilities, including self-regulatory skills of planning, monitoring, and evaluating. In a fluid mechanics course for undergraduates at a large southeastern U.S. university, in-class problem solving in a flipped classroom was coupled with intentional metacognitive skills instruction and repeated reflection to enhance metacognition. The weekly reflective responses were coded by two analysts to identify the recurring themes and uncover evidence of the development and/or reinforcement of self-regulating behaviors for academic management. To enable a comparison, a flipped classroom without the metacognitive instruction and repeated reflection was also implemented (i.e., non-intervention group). The two cohorts completed identical final exams. Based on our preliminary analysis with year one data, a statistically and practically-significant difference between the two cohorts was found with the free-response scores on the final exam in favor of the intervention cohort that had received the metacognitive support ( p < 0.0005; Cohen's d = 0.72). Also, the Metacognitive Activities Inventory (MCAI) indicated a significantly-higher positive change in self-regulatory behavior for the intervention cohort ( p = 0.001; d = 0.50). Focus groups were conducted to gather students’ perspectives on the reflective activity, with differences found by demographic group. In addition, a significantly higher proportion of females (versus males) viewed the reflections in a positive manner ( p = 0.05). Significant associations between themes in the weekly reflections and direct knowledge measures were also uncovered. This included a positive relationship between academic self-management (i.e., diligence and carefulness) and exam performance. Overall, our preliminary results point to a desirable impact of metacognitive instruction and repeated reflection on knowledge outcomes, metacognitive skills, and self-regulatory behaviors.

     
    more » « less
  2. Metacognition is the understanding of your own knowledge including what knowledge you do not have and what knowledge you do have. This includes knowledge of strategies and regulation of one’s own cognition. Studying metacognition is important because higher-order thinking is commonly used, and problem-solving skills are positively correlated with metacognition. A positive previous disposition to metacognition can improve problem-solving skills. Metacognition is a key skill in design and manufacturing, as teams of engineers must solve complex problems. Moreover, metacognition increases individual and team performance and can lead to more original ideas. This study discusses the assessment of metacognitive skills in engineering students by having the students participate in hands-on and virtual reality activities related to design and manufacturing. The study is guided by two research questions: (1) do the proposed activities affect students’ metacognition in terms of monitoring, awareness, planning, self-checking, or strategy selection, and (2) are there other components of metacognition that are affected by the design and manufacturing activities? The hypothesis is that the participation in the proposed activities will improve problem-solving skills and metacognitive awareness of the engineering students. A total of 34 undergraduate students participated in the study. Of these, 32 were male and 2 were female students. All students stated that they were interested in pursuing a career in engineering. The students were divided into two groups with the first group being the initial pilot run of the data. In this first group there were 24 students, in the second group there were 10 students. The groups’ demographics were nearly identical to each other. Analysis of the collected data indicated that problem-solving skills contribute to metacognitive skills and may develop first in students before larger metacognitive constructs of awareness, monitoring, planning, self-checking, and strategy selection. Based on this, we recommend that the problem-solving skills and expertise in solving engineering problems should be developed in students before other skills emerge or can be measured. While we are sure that the students who participated in our study have awareness as well as the other metacognitive skills in reading, writing, science, and math, they are still developing in relation to engineering problems. 
    more » « less
  3. Self-regulation, a skillset involving taking charge of one’s own learning processes, is crucial for workplace success. Learners develop self-regulation skills through reflection where they recognize weaknesses and strengths by employing metacognitive strategies: planning, monitoring, and evaluating. Use of anchors assists learners’ engagement in reflection. The purpose of this work was to gain insight into students’ use of anchors when reflecting on their learning. The two research questions were: (1) To what extent do students link their self-evaluation and learning objective (LO) self-ratings to their reflections? and (2) What dimensions and level of metacognitive strategies do students use in their self-evaluation of and reflections on weekly problem-solving assignments? Data were upper-division engineering students’ anchors (self- evaluations, LO self-ratings) and reflection responses for one assignment. Self-evaluations and reflections were analyzed for the presence of references to LOs. The number of students who linked the anchors to their reflection were tabulated. Additionally, a revised a priori coding scheme was applied to students’ written work to determine type and level of metacognitive strategies employed. Few students linked both anchors to their reflections. Students employed low to medium levels of the metacognitive strategies in their self-evaluations and reflections, even when they linked their anchors and reflections. The evaluating strategy dominated in the self- evaluations, while planning and monitoring dominated in the reflections. Students have limited understanding of the use of anchors to guide their reflection responses. Students overall level of engagement in the metacognitive strategies indicates a need for formal instruction on reflection. 
    more » « less
  4. In this paper, we preliminarily examine the notion of the “surroundings” in an engineering classroom. We posed an open-ended reflection question to engineering undergraduates at a large US university about their classroom surroundings and its impact on their learning and comprehension. The reflection prompt defined surroundings as the “conditions and objects that surround you.” This reflection question was part of an NSF-funded study on the use of weekly reflection in a flipped fluid mechanics course to drive metacognitive development and lifelong learning skills. During class, students were encouraged to collaborate with their peers during problem solving to achieve collective understanding and interact with the instructor. Based on an inductive, emergent content analysis of the reflection data with two analysts, we obtained an unexpected result. Specifically, the most-frequently mentioned positive classroom “surroundings” was “peers” (46% of responses). We had initially expected less-positive responses related to the physical surroundings, such as classroom layout, size, furniture, infrastructure, etc. Although students identified the classroom’s physical attributes as surroundings that had both negative and positive influences on their learning, a second unexpected positive response emerged with the instructor and in-person instruction as part of the “surroundings.” Upon searching the literature to understand these results, we adopted the Community of Inquiry (CoI) framework. This model consists of three interacting components of cognitive presence, social presence, and teaching presence, which enable educational experiences and learning. When combined, the Community of Inquiry elements (i.e., peers, instructor, and in-class instruction) were discussed in 55% of the reflections as positive “surroundings.” Within the classroom ecosystem, feelings about positive CoI “surroundings” balanced 54% of respondents who discussed the physical room attributes as non-supportive to learning. Interestingly, when students identified their CoI as a type of surrounding, they less-frequently identified physical attributes of the classroom as non-supportive. Thus, the presence of a Community of Inquiry may have diminished the perception or impact of physical room features. Overall, our results preliminarily suggest the positive influence that an interactive flipped classroom structure can have on students’ perceptions of their “surroundings.” 
    more » « less
  5. Gardner, Stephanie (Ed.)
    Stronger metacognition, or awareness and regulation of thinking, is related to higher academic achievement. Most metacognition research has focused at the level of the individual learner. However, a few studies have shown that students working in small groups can stimulate metacognition in one another, leading to improved learning. Given the increased adoption of interactive group work in life science classrooms, there is a need to study the role of social metacognition, or the awareness and regulation of the thinking of others, in this context. Guided by the frameworks of social metacognition and evidence-based reasoning, we asked: 1) What metacognitive utterances (words, phrases, statements, or questions) do students use during small-group problem solving in an upper-division biology course? 2) Which metacognitive utterances are associated with small groups sharing higher-quality reasoning in an upper-division biology classroom? We used discourse analysis to examine transcripts from two groups of three students during breakout sessions. By coding for metacognition, we identified seven types of metacognitive utterances. By coding for reasoning, we uncovered four categories of metacognitive utterances associated with higher-quality reasoning. We offer suggestions for life science educators interested in promoting social metacognition during small-group problem solving. 
    more » « less