We follow up on recent work demonstrating clear advantages of lexical-to-sublexical feedback in the TRACE model of spoken word recognition. The prior work compared accuracy and recognition times in TRACE with feedback on or off as progressively more noise was added to inputs. Recognition times were faster with feedback at every level of noise, and there was an accuracy advantage for feedback with noise added to inputs. However, a recent article claims that those results must be an artifact of converting activations to response probabilities, because feedback could only reinforce the “status quo.” That is, the claim is that given noisy inputs, feedback must reinforce all inputs equally, whether driven by signal or noise. We demonstrate that the feedback advantage replicates with raw activations. We also demonstrate that lexical feedback selectively reinforces lexically-coherent input patterns – that is, signal over noise – and explain how that behavior emerges naturally in interactive activation.
more »
« less
Contra assertions, feedback improves word recognition: How feedback and lateral inhibition sharpen signals over noise
Whether top-down feedback modulates perception has deep implications for cognitive theories. Debate has been vigorous in the domain of spoken word recognition, where competing computational models and agreement on at least one diagnostic experimental paradigm suggest that the debate may eventually be resolvable. Norris and Cutler (2021) revisit arguments against lexical feedback in spoken word recognition models. They also incorrectly claim that recent computational demonstrations that feedback promotes accuracy and speed under noise (Magnuson et al., 2018) were due to the use of the Luce choice rule rather than adding noise to inputs (noise was in fact added directly to inputs). They also claim that feedback cannot improve word recognition because feedback cannot distinguish signal from noise. We have two goals in this paper. First, we correct the record about the simulations of Magnuson et al. (2018). Second, we explain how interactive activation models selectively sharpen signals via joint effects of feedback and lateral inhibition that boost lexically-coherent sublexical patterns over noise. We also review a growing body of behavioral and neural results consistent with feedback and inconsistent with autonomous (non-feedback) architectures, and conclude that parsimony supports feedback. We close by discussing the potential for synergy between autonomous and interactive approaches.
more »
« less
- Award ID(s):
- 2043903
- PAR ID:
- 10509567
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Cognition
- Volume:
- 242
- Issue:
- C
- ISSN:
- 0010-0277
- Page Range / eLocation ID:
- 105661
- Subject(s) / Keyword(s):
- spoken word recognition computational models feedback interaction
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Time-Invariant String Kernel (TISK) model of spoken word recognition (Hanngan et al., 2013) is an interactive activation model like TRACE (McClelland & Elman, 1986). However, it uses orders of magnitude fewer nodes and connections because it replaces TRACE's time-specific duplicates of phoneme and word nodes with time-invariant nodes based on a string kernel representation (essentially a phoneme-by-phoneme matrix, where a word is encoded as by all ordered open diphones it contains; e.g., cat has /kæ/, /æt/, and /kt/). Hannagan et al. (2013) showed that TISK behaves similarly to TRACE in the time course of phonological competition and even word-specific recognition times. However, the original implementation did not include feedback from words to diphone nodes, precluding simulation of top-down effects. Here, we demonstrate that TISK can be easily adapted to lexical feedback, affording simulation of top-down effects as well as allowing the model to demonstrate graceful degradation given noisy inputs.more » « less
-
The Time-Invariant String Kernel (TISK) model of spoken word recognition (Hannagan, Magnuson & Grainger, 2013; You & Magnuson, 2018) is an interactive activation model with many similarities to TRACE (McClelland & Elman, 1986). However, by replacing most time-specific nodes in TRACE with time-invariant open-diphone nodes, TISK uses orders of magnitude fewer nodes and connections than TRACE. Although TISK performed remarkably similarly to TRACE in simulations reported by Hannagan et al., the original TISK implementation did not include lexical feedback, precluding simulation of top-down effects, and leaving open the possibility that adding feedback to TISK might fundamentally alter its performance. Here, we demonstrate that when lexical feedback is added to TISK, it gains the ability to simulate top-down effects without losing the ability to simulate the fundamental phenomena tested by Hannagan et al. Furthermore, with feedback, TISK demonstrates graceful degradation when noise is added to input, although parameters can be found that also promote (less) graceful degradation without feedback. We review arguments for and against feedback in cognitive architectures, and conclude that feedback provides a computationally efficient basis for robust constraint-based processing.more » « less
-
This study investigates whether short-term perceptual training can enhance Seoul-Korean listeners’ use of English lexical stress in spoken word recognition. Unlike English, Seoul Korean does not have lexical stress (or lexical pitch accents/tones). Seoul-Korean speakers at a high-intermediate English proficiency completed a visual-world eye-tracking experiment adapted from Connell et al. (2018) (pre-/post-test). The experiment tested whether pitch in the target stimulus (accented versus unaccented first syllable) and vowel quality in the lexical competitor (reduced versus full first vowel) modulated fixations to the target word (e.g., PARrot; ARson) over the competitor word (e.g., paRADE or PARish; arCHIVE or ARcade). In the training (eight 30-min sessions over eight days), participants heard English lexical-stress minimal pairs uttered by four talkers (high variability) or one talker (low variability), categorized them as noun (first-syllable stress) or verb (second-syllable stress), and received accuracy feedback. The results showed that neither training increased target-over-competitor fixation proportions. Crucially, the same training had been found to improve Seoul- Korean listeners’ recall of English words differing in lexical stress (Tremblay et al., 2022) and their weighting of acoustic cues to English lexical stress (Tremblay et al., 2023). These results suggest that short-term perceptual training has a limited effect on target-over-competitor word activation.more » « less
-
null (Ed.)Successful listening in a second language (L2) involves learning to identify the relevant acoustic–phonetic dimensions that differentiate between words in the L2, and then use these cues to access lexical representations during real-time comprehension. This is a particularly challenging goal to achieve when the relevant acoustic–phonetic dimensions in the L2 differ from those in the L1, as is the case for the L2 acquisition of Mandarin, a tonal language, by speakers of non-tonal languages like English. Previous work shows tone in L2 is perceived less categorically (Shen and Froud, 2019) and weighted less in word recognition (Pelzl et al., 2019) than in L1. However, little is known about the link between categorical perception of tone and use of tone in real time L2 word recognition at the level of the individual learner. This study presents evidence from 30 native and 29 L1-English speakers of Mandarin who completed a real-time spoken word recognition and a tone identification task. Results show that L2 learners differed from native speakers in both the extent to which they perceived tone categorically as well as in their ability to use tonal cues to distinguish between words in real-time comprehension. Critically, learners who reliably distinguished between words differing by tone alone in the word recognition task also showed more categorical perception of tone on the identification task. Moreover, within this group, performance on the two tasks was strongly correlated. This provides the first direct evidence showing that the ability to perceive tone categorically is related to the weighting of tonal cues during spoken word recognition, thus contributing to a better understanding of the link between phonemic and lexical processing, which has been argued to be a key component in the L2 acquisition of tone (Wong and Perrachione, 2007).more » « less