skip to main content


This content will become publicly available on May 25, 2025

Title: Modeling Blue Crab ( Callinectes sapidus ) Larval Transport and Recruitment Dynamics in a Shallow Lagoon‐Inlet‐Coastal Ocean System
Abstract

Blue crab (Callinectes sapidus) supports lucrative Mid‐Atlantic crustacean fisheries and plays an important role in estuarine ecology, so their larval transport and recruitment dynamics in the Maryland Coastal Bays system were investigated using simulated and observed surface drifters. Relative contributions of winds, tides, density gradients, and waves to larval recruitment success were identified during the spawning season, particularly under hurricane conditions in 2014. Based on temperature (e.g., 19–29°C) and salinity conditions (e.g., 23–33 PSU), particles representing virtual blue crab larvae were released into the model domain from early June to late October 2014. During the spawning season, variations in the larval recruitment success caused by wind speed and direction, tides (e.g., affecting through inlets), density gradients (e.g., salinity variations), and surface gravity waves were 17%, 4%, −9%, and 17%, respectively. During Hurricane Arthur (2014), variability of self‐recruitment success caused by density gradients are negligible while by other three factors are comparable at 3%–4%. Surface drifter experiments support the modeling results that larval recruitment success is strongly associated with the coastal circulation. The high (low) self‐recruitment success in the Assawoman and Chincoteague Bays (Sinepuxent Bay) is related to the locally weak (strong) circulation; released larvae escape from inlets are likely recruited to southern Fenwick and northern Assateague Islands, and the coastal regions outside the Chincoteague Inlet. Understanding physical factors influencing larval recruitment success helps resource managers make informed decisions about habitat restoration and harvest regulations, in addition to seafood‐related food security.

 
more » « less
NSF-PAR ID:
10509663
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
129
Issue:
5
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Successful recruitment is critical to the maintenance and resilience of populations and may be at the core of the transition from scleractinian to octocoral dominated faunas on some Caribbean reefs. For sessile invertebrates, recruitment incorporates the composite effects of larval supply, settlement and survival. The relative success of these processes differs between species and successful recruitment may be achieved through different life history strategies. Recruitment of six abundant and widespread Antillogorgia spp. was assessed at six sites on Little Bahama Bank from 2009–2012. Identification of recruits to species level, based on microsatellite analyses, revealed differences in recruitment and survival between species, sites and ears. The broadcast spawning species, A. americana and A. acerosa had low rates of early recruitment and postsettlement survival. Higher levels of recruitment success were achieved among brooding and surface brooding species following somewhat different patterns of early recruitment and survival. The internal brooder Antillogorgia hystrix had the highest recruitment at five of the sites but low survival dramatically reduced its abundance and after a year it had similar densities as the surface brooding species, A. elisabethae and A. bipinnata. The brooders have smaller colonies and will produce fewer larvae than the broadcast spawning species, but they release competent larvae which probably accounts for their higher recruitment rates. The Antillogorgia illustrate the diversity of successful reproductive strategies exhibited by octocorals, and differences in the life history strategies among these congeners are best characterized by their mode of larval development. 
    more » « less
  2. Lagoon systems are more heavily impacted by hurricanes, whereas the relevant stormsurge modeling studies have been paid little attention to lagoon systems and the storm-induced exchange in lagoon systems is even less understood. To address this gap, a three-dimensional unstructured grid-based model was configured for the Maryland Coastal Bays, a typical lagoon system with two unique inlets (Ocean City Inlet (OCI) and Chincoteague Inlet (CI)), to investigate how Hurricane Sandy impacted inlet dynamics. A nesting model framework was applied to provide the necessary remote forcing from a large model domain and maintain the intricate shoreline and bathymetry of an inner model domain. Results indicated that the flux patterns varied in response to the change in wind direction and rising/falling high water levels from the coastal ocean, rather than a single flow pattern during the passage of Sandy. FromOctober 29 05:00 to 17:00 UTC, mild (> 10 m/s) and strong (> 15m/s) northerly winds accompanied by the rising high water level from the coastal ocean promoted a mean inflow pattern at the OCI and amean outflow pattern at the CI. Strong southwesterly winds (> 15 m/s) dominated in the bays from October 30 03:00 to 15:00 UTC. Under strong southwesterly winds and falling high water levels from the coastal ocean, flux was transported landward at the CI and seaward at the OCI. Sensitivity experiments on various storm temporal scales showed that a net inflow pattern occurred in the bays, and the net exchange amounts became smaller in response to longer storm durations. Residual effect of relatively high river flow from Sandy could still influence the salinity at the OCI, whereas the CI salinity was not affected by river flow owing to a long distance between the CI and river locations. 
    more » « less
  3. Irigoien, Xabier (Ed.)
    Abstract Larval abundances of Atlantic bluefin tuna (ABT) in the Gulf of Mexico are currently utilized to inform future recruitment by providing a proxy for the spawning potential of western ABT stock. Inclusion of interannual variations in larval growth is a key advance needed to translate larval abundance to recruitment success. However, little is known about the drivers of growth variations during the first weeks of life. We sampled patches of western ABT larvae in 3–4 day Lagrangian experiments in May 2017 and 2018, and assessed age and growth rates from sagittal otoliths relative to size categories of zooplankton biomass and larval feeding behaviors from stomach contents. Growth rates were similar, on average, between patches (0.37 versus 0.39 mm d−1) but differed significantly through ontogeny and were correlated with a food limitation index, highlighting the importance of prey availability. Otolith increment widths were larger for postflexion stages in 2018, coincident with high feeding on preferred prey (mainly cladocerans) and presumably higher biomass of more favorable prey type. Faster growth reflected in the otolith microstructures may improve survival during the highly vulnerable larval stages of ABT, with direct implications for recruitment processes. 
    more » « less
  4. Coral reefs in Moorea, French Polynesia, suffered catastrophic coral mortality through predation by Acanthaster planci from 2006 to 2010, and Cyclone Oli in 2010, yet by 2015 some coral populations were approaching pre-disturbance sizes. Using long-term study plots, we quantified population dynamics of spawning Pocillopora spp. along the north shore of Moorea between 2010 and 2014, and considered evidence that population recovery could be supported by self-seeding. Results scaled up from study plots and settlement tiles suggest that the number of Pocillopora spp. colonies on the outer reef increased 1,890-fold between 2010 and 2014/2015, and in the back reef, 8-fold between 2010 and 2014/2015. Assuming that spawning Pocillopora spp. in Moorea release similar numbers of eggs as con-generics in Hawaii, and fertilization success is similar to other spawning corals, the capacity of Pocillopora spp. to produce larvae was estimated. These estimates suggest that Pocillopora spp. in Moorea produced a large excess of larvae in 2010 and 2014 relative to the number required to produce the recruits found in the back reef and outer reef in 2010 and 2014, even assuming that ∼99.9% of the larvae do not recruit in Moorea. Less than a third of the recruits in one year would have to survive to produce the juvenile Pocillopora spp. found in the back and outer reefs in 2010 and 2014/2015. Our first order approximations reveal the potential for Pocillopora spp. on the north shore of Moorea to produce enough larvae to support local recruitment and population recovery following a catastrophic disturbance. 
    more » « less
  5. Abstract Blue crabs ( Callinectes sapidus ) are highly mobile, ecologically-important mesopredators that support multimillion-dollar fisheries along the western Atlantic Ocean. Understanding how blue crabs respond to coastal landscape change is integral to conservation and management, but such insights have been limited to a narrow range of habitats and spatial scales. We examined how local-scale to landscape-scale habitat characteristics and bathymetric features (channels and oceanic inlets) affect the relative abundance (catch per unit effort, CPUE) of adult blue crabs across a > 33 km 2 seagrass landscape in coastal Virginia, USA. We found that crab CPUE was 1.7 × higher in sparse (versus dense) seagrass, 2.4 × higher at sites farther from (versus nearer to) salt marshes, and unaffected by proximity to oyster reefs. The probability that a trapped crab was female was 5.1 × higher in sparse seagrass and 8 × higher near deep channels. The probability of a female crab being gravid was 2.8 × higher near seagrass meadow edges and 3.3 × higher near deep channels. Moreover, the likelihood of a gravid female having mature eggs was 16 × greater in sparse seagrass and 32 × greater near oceanic inlets. Overall, we discovered that adult blue crab CPUE is influenced by seagrass, salt marsh, and bathymetric features on scales from meters to kilometers, and that habitat associations depend on sex and reproductive stage. Hence, accelerating changes to coastal geomorphology and vegetation will likely alter the abundance and distribution of adult blue crabs, challenging marine spatial planning and ecosystem-based fisheries management. 
    more » « less