High-level electronic structure calculations are carried out to obtain optimized geometries and excitation energies of neutral lithium, sodium, and potassium complexes with two ethylenediamine and one or two crown ether molecules. Three different sizes of crowns are employed (12-crown-4, 15-crown-5, 18-crown-6). The ground state of all complexes contains an electron in an s-type orbital. For the mono-crown ether complexes, this orbital is the polarized valence s-orbital of the metal, but for the other systems this orbital is a peripheral diffuse orbital. The nature of the low-lying electronic states is found to be different for each of these species. Specifically, the metal ethylenediamine complexes follow the previously discovered shell model of metal ammonia complexes (1s, 1p, 1d, 2s, 1f), but both mono- and sandwich di-crown ether complexes bear a different shell model partially due to their lower (cylindrical) symmetry and the stabilization of the 2s-type orbital. Li(15-crown-5) is the only complex with the metal in the middle of the crown ether and adopts closely the shell model of metal ammonia complexes. Our findings suggest that the electronic band structure of electrides (metal crown ether sandwich aggregates) and expanded metals (metal ammonia aggregates) should be different despite the similar nature of these systems (bearing diffuse electrons around a metal complex).
more »
« less
Ab Initio Calculations on the Ground and Excited Electronic States of Thorium–Ammonia, Thorium–Aza-Crown, and Thorium–Crown Ether Complexes
Positively charged metal–ammonia complexes are known to host peripheral, diffuse electrons around their molecular skeleton. The resulting neutral species form materials known as expanded or liquid metals. Alkali, alkaline earth, and transition metals have been investigated previously in experimental and theoretical studies of both the gas and condensed phase. This work is the first ab initio exploration of an f-block metal–ammonia complex. The ground and excited states are calculated for Th0–3+ complexes with ammonia, crown ethers, and aza-crown ethers. For Th3+ complexes, the one valence electron Th populates the metal’s 6d or 7f orbitals. For Th0–2+, the additional electrons prefer occupation of the outer s- and p-type orbitals of the complex, except Th(NH3)10, which uniquely places all four electrons in outer orbitals of the complex. Although thorium coordinates up to ten ammonia ligands, octa-coordinated complexes are more stable. Crown ether complexes have a similar electronic spectrum to ammonia complexes, but excitations of electrons in the outer orbitals of the complex are higher in energy. Aza-crown ethers disfavor the orbitals perpendicular to the crowns, attributed to the N-H bonds pointing along the plane of the crowns.
more »
« less
- Award ID(s):
- 1940456
- PAR ID:
- 10509757
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Molecules
- Volume:
- 28
- Issue:
- 12
- ISSN:
- 1420-3049
- Page Range / eLocation ID:
- 4712
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Aza-crown ether structures have been proven to be effective in constructing fluorescent biosensors for selectively detecting and imaging alkali metal ions in biological environments. However, choosing the right aza-crown ether for a specific alkali metal ion remains challenging for synthetic chemists because theoretical guidance on the chelating activities between aza-crown ethers and alkali metal ions has not been available up to now. Predicting the physical properties of the chelator–metal complexations poses a greater challenge due to the numerous quantum mechanical functionals and basis sets to be used in any theoretical investigation. In this study, we report a theoretical investigation of different aza-crown ether structures and their selectivities to alkali metal ions via a novel relationship between the binding energy and charge transfer calculated using twelve different quantum mechanical methods, using a myriad of bases, within the Jacob’s Ladder of Chemical Accuracies. Furthermore, this report represents a guide for the synthetic chemist in the selection of aza-crown ethers in the capturing of specific alkali metal ions, primary objectives, while benchmarking different quantum mechanical calculations, as a secondary objective.more » « less
-
Although crown ethers can selectively bind many metal cations, little is known regarding the solution properties of crown ether complexes of the uranyl dication, UO2 2+. Here, the synthesis and characterization of isolable complexes in which the uranyl dication is bound in an 18-crown-6-like moiety are reported. A tailored macrocyclic ligand, templated with a Pt(II) center, captures UO2 2+ in the crown moiety, as demonstrated by results from single-crystal X-ray diffraction analysis. The U(V) oxidation state becomes accessible at a quite positive potential (E1/2) of −0.18 V vs Fc+/0 upon complexation, representing the most positive UVI/UV potential yet reported for the UO2 n+ core. Isolation and characterization of the U(V) form of the crown complex are also reported here; there are no prior reports of reduced uranyl crown ether complexes, but U(V) is clearly stabilized by crown chelation. Joint computational studies show that the electronic structure of the U(V) form results in significant weakening of U−Ooxo bonding despite the quite positive reduction potential at which this species can be accessed, underscoring that crown-ligated uranyl species could demonstrate unique reactivity under only modestly reducing conditions.more » « less
-
A unique chain-rupturing transformation that converts an ether functionality into two hydrocarbyl units and carbon monoxide is reported, mediated by iridium( i ) complexes supported by aminophenylphosphinite (NCOP) pincer ligands. The decarbonylation, which involves the cleavage of one C–C bond, one C–O bond, and two C–H bonds, along with formation of two new C–H bonds, was serendipitously discovered upon dehydrochlorination of an iridium( iii ) complex containing an aza-18-crown-6 ether macrocycle. Intramolecular cleavage of macrocyclic and acyclic ethers was also found in analogous complexes featuring aza-15-crown-5 ether or bis(2-methoxyethyl)amino groups. Intermolecular decarbonylation of cyclic and linear ethers was observed when diethylaminophenylphosphinite iridium( i ) dinitrogen or norbornene complexes were employed. Mechanistic studies reveal the nature of key intermediates along a pathway involving initial iridium( i )-mediated double C–H bond activation.more » « less
-
Abstract Density functional theory and ab initio multi-reference calculations are performed to examine the stability and electronic structure of boron complexes that host diffuse electrons in their periphery. Such complexes (solvated electron precursors or SEPs) have been experimentally identified and studied theoretically for several s- and d-block metals. For the first time, we demonstrate that a p-block metalloid element can form a stable SEP when appropriate ligands are chosen. We show that three ammonia and one methyl ligands can displace two of the three boron valence electrons to a peripheral 1s-type orbital. The shell model for these outer electrons is identical to previous SEP systems (1s, 1p, 1d, 2s). Further, we preformed the first examination of a molecular system consisting of two SEPs bridged by a hydrocarbon chain. The electronic structure of these dimers is very similar to that of traditional diatomic molecules forming bonding and anti-bonding σ and π orbitals. Their ground state electronic structure resembles that of two He atoms, and our results indicate that the excitation energies are nearly independent of the chain length for four carbon atoms or longer. These findings pave the way for the development of novel materials similar to expanded metals and electrides.more » « less
An official website of the United States government

