Positively charged metal–ammonia complexes are known to host peripheral, diffuse electrons around their molecular skeleton. The resulting neutral species form materials known as expanded or liquid metals. Alkali, alkaline earth, and transition metals have been investigated previously in experimental and theoretical studies of both the gas and condensed phase. This work is the first ab initio exploration of an f-block metal–ammonia complex. The ground and excited states are calculated for Th0–3+ complexes with ammonia, crown ethers, and aza-crown ethers. For Th3+ complexes, the one valence electron Th populates the metal’s 6d or 7f orbitals. For Th0–2+, the additional electrons prefer occupation of the outer s- and p-type orbitals of the complex, except Th(NH3)10, which uniquely places all four electrons in outer orbitals of the complex. Although thorium coordinates up to ten ammonia ligands, octa-coordinated complexes are more stable. Crown ether complexes have a similar electronic spectrum to ammonia complexes, but excitations of electrons in the outer orbitals of the complex are higher in energy. Aza-crown ethers disfavor the orbitals perpendicular to the crowns, attributed to the N-H bonds pointing along the plane of the crowns.
more »
« less
This content will become publicly available on June 1, 2026
A Theoretical Investigation of the Selectivity of Aza-Crown Ether Structures Chelating Alkali Metal Cations for Potential Biosensing Applications
Aza-crown ether structures have been proven to be effective in constructing fluorescent biosensors for selectively detecting and imaging alkali metal ions in biological environments. However, choosing the right aza-crown ether for a specific alkali metal ion remains challenging for synthetic chemists because theoretical guidance on the chelating activities between aza-crown ethers and alkali metal ions has not been available up to now. Predicting the physical properties of the chelator–metal complexations poses a greater challenge due to the numerous quantum mechanical functionals and basis sets to be used in any theoretical investigation. In this study, we report a theoretical investigation of different aza-crown ether structures and their selectivities to alkali metal ions via a novel relationship between the binding energy and charge transfer calculated using twelve different quantum mechanical methods, using a myriad of bases, within the Jacob’s Ladder of Chemical Accuracies. Furthermore, this report represents a guide for the synthetic chemist in the selection of aza-crown ethers in the capturing of specific alkali metal ions, primary objectives, while benchmarking different quantum mechanical calculations, as a secondary objective.
more »
« less
- Award ID(s):
- 2213445
- PAR ID:
- 10615159
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Molecules
- Volume:
- 30
- Issue:
- 12
- ISSN:
- 1420-3049
- Page Range / eLocation ID:
- 2571
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A unique chain-rupturing transformation that converts an ether functionality into two hydrocarbyl units and carbon monoxide is reported, mediated by iridium( i ) complexes supported by aminophenylphosphinite (NCOP) pincer ligands. The decarbonylation, which involves the cleavage of one C–C bond, one C–O bond, and two C–H bonds, along with formation of two new C–H bonds, was serendipitously discovered upon dehydrochlorination of an iridium( iii ) complex containing an aza-18-crown-6 ether macrocycle. Intramolecular cleavage of macrocyclic and acyclic ethers was also found in analogous complexes featuring aza-15-crown-5 ether or bis(2-methoxyethyl)amino groups. Intermolecular decarbonylation of cyclic and linear ethers was observed when diethylaminophenylphosphinite iridium( i ) dinitrogen or norbornene complexes were employed. Mechanistic studies reveal the nature of key intermediates along a pathway involving initial iridium( i )-mediated double C–H bond activation.more » « less
-
Bipyridine ligands have been extensively employed in nickel catalysis, with ligand modifications focused on steric or electronic tuning. In this work, we explore modifications designed to modulate the coordination mode using a 2,2'-bipyridine derivative with an appended aza-crown ether macrocycle capable of flexidentate binding to nickel. A series of complexes varying in charge from neutral to dicationic demonstrates the flexibility of the macrocycle, with bipyridine-aza-crown ether denticity changing from к4 to к6 upon sequential abstraction of chloride ligands. The changes in binding mode can be reversed by addition of chloride ion. Comparisons between the macrocycle-containing ligand and an analogous ligand with a non-macrocyclic diethylamine donor provide insight into the role of the crown ether, including in electrochemical reductions probed via cyclic voltammetry.more » « less
-
Abstract Chemical reduction of pentacene (C22H14,1) with Group 1 metals ranging from Li to Cs revealed that1readily undergoes a two‐fold reduction to afford a doubly‐reduced12−anion in THF. With the help of 18‐crown‐6 ether used as a secondary coordinating agent, five π‐complexes of12−with different alkali metal counterions have been isolated and fully characterized. This series of complexes enables the first evaluation of alkali‐metal ion binding patterns and structural changes of the12−dianion based on the crystallographically confirmed examples. The difference in coordination of the smallest Li+ion vs. heavier Group 1 congeners has been demonstrated. In addition, the use of benzo‐15‐crown‐5 in the reaction of1with Na metal allowed the isolation of the unique solvent‐separated ion product with a “naked” dianion,12−. The detailed structural analyses of the series revealed the C−C bond alteration and core deformation of pentacene upon two‐fold reduction and complexation. The negative charge localization at the central six‐membered ring of12−identified by theoretical calculations corroborates with the X‐ray crystallographic results. Subsequent in‐depth theoretical analysis provided a detailed description of changes in the electronic structure and aromaticity of pentacene upon reduction.more » « less
-
Inverse-sandwich samarium and ytterbium biphenyl complexes were synthesized by the reduction of their trivalent halide precursors with potassium graphite in the presence of biphenyl. While the samarium complex had a similar structure as previously reported rare earth metal biphenyl complexes, with the two samarium ions bound to the same phenyl ring, the ytterbium counterpart adopted a different structure, with the two ytterbium ions bound to different phenyl rings. Upon the addition of crown ether to encapsulate the potassium ions, the inverse-sandwich samarium biphenyl structure remained intact; however, the ytterbium biphenyl structure fell apart with the concomitant formation of a divalent ytterbium crown ether complex and potassium biphenylide. Spectroscopic and computational studies were performed to gain insight into the electronic structures and bonding interactions of these samarium and ytterbium biphenyl complexes. While the ytterbium ions were found to be divalent with a 4f 14 electron configuration and form a primarily ionic bonding interaction with biphenyl dianion, the samarium ions were in the trivalent state with a 4f 5 electron configuration and mainly utilized the 5d orbitals to form a δ-type bonding interaction with the π* orbitals of the biphenyl tetraanion, showing covalent character.more » « less
An official website of the United States government
