The gravitational perturbations of a rotating Kerr black hole are notoriously complicated, even at the linear level. In 1973, Teukolsky showed that their physical degrees of freedom are encoded in two gauge-invariant Weyl curvature scalars that obey a separable wave equation. Determining these scalars is sufficient for many purposes, such as the computation of energy fluxes. However, some applications—such as second-order perturbation theory—require the reconstruction of metric perturbations. In principle, this problem was solved long ago, but in practice, the solution has never been worked out explicitly. Here, we do so by writing down the metric perturbation (in either ingoing or outgoing radiation gauge) that corresponds to a given mode of either Weyl scalar. Our formulas make no reference to the Hertz potential (an intermediate quantity that plays no fundamental role) and involve only the radial and angular Kerr modes, but not their derivatives, which can be altogether eliminated using the Teukolsky–Starobinsky identities. We expect these analytic results to prove useful in numerical studies and for extending black hole perturbation theory beyond the linear regime.
This content will become publicly available on November 1, 2024
We study black hole linear perturbation theory in a four-dimensional Schwarzschild (anti) de Sitter background. When dealing with a
- Award ID(s):
- 2210533
- NSF-PAR ID:
- 10509761
- Publisher / Repository:
- JHEP
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2023
- Issue:
- 11
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract We introduce a semiparametric model for the primary mass distribution of binary black holes (BBHs) observed with gravitational waves (GWs) that applies a cubic-spline perturbation to a power law. We apply this model to the 46 BBHs included in the second gravitational-wave transient catalog (GWTC-2). The spline perturbation model recovers a consistent primary mass distribution with previous results, corroborating the existence of a peak at 35
M ⊙(>97% credibility) found with the Powerlaw +Peak model. The peak could be the result of pulsational pair-instability supernovae. The spline perturbation model finds potential signs of additional features in the primary mass distribution at lower masses similar to those previously reported by Tiwari and Fairhurst. However, with fluctuations due to small-number statistics, the simpler Powerlaw +Peak and Broken Powerlaw models are both still perfectly consistent with observations. Our semiparametric approach serves as a way to bridge the gap between parametric and nonparametric models to more accurately measure the BBH mass distribution. With larger catalogs we will be able to use this model to resolve possible additional features that could be used to perform cosmological measurements and will build on our understanding of BBH formation, stellar evolution, and nuclear astrophysics. -
Abstract We investigate the two-stage inflation regime in the theory of hybrid cosmological
α -attractors. The spectrum of inflationary perturbations is compatible with the latest Planck/BICEP/Keck Array results, thanks to the attractor properties of the model. However, at smaller scales, it may have a very high peak of controllable width and position, leading to a copious production of primordial black holes (PBH) and generation of a stochastic background of gravitational waves (SGWB). -
The detection of gravitational waves resulting from the coalescence of binary black holes by the LIGO-Virgo-Kagra Collaboration has inaugurated a new era in gravitational physics. These gravitational waves provide a unique opportunity to test Einstein’s general relativity and its modifications in the regime of extreme gravity. A significant aspect of such tests involves the study of the ringdown phase of gravitational waves from binary black hole coalescence, which can be decomposed into a superposition of various quasinormal modes. In general relativity, the spectra of quasinormal modes depend on the mass, spin, and charge of the final black hole, but they can also be influenced by additional properties of the black hole spacetime, as well as corrections to the general theory of relativity. In this work, we focus on a specific modified theory known as dynamical Chern-Simons gravity. We employ the modified Teukolsky formalism developed in a previous study and lay down the foundations to investigate perturbations of slowly rotating black holes admitted by the theory. Specifically, we derive the master equations for theandWeyl scalar perturbations that characterize the radiative part of gravitational perturbations, as well as the master equation for the scalar field perturbations. We employ metric reconstruction techniques to obtain explicit expressions for all relevant quantities. Finally, by leveraging the properties of spin-weighted spheroidal harmonics to eliminate the angular dependence from the evolution equations, we derive two, radial, second-order, ordinary differential equations forand, respectively. These two equations are coupled to another radial, second-order, ordinary differential equation for the scalar field perturbations. This work is the first attempt to derive a master equation for black holes in dynamical Chern-Simons gravity using curvature perturbations. The master equations we obtain can then be numerically integrated to obtain the quasinormal mode spectrum of slowly rotating black holes in this theory, making progress in the study of ringdown in dynamical Chern-Simons gravity.
Published by the American Physical Society 2024 -
A bstract The requirement that particles propagate causally on non-trivial backgrounds implies interesting constraints on higher-derivative operators. This work is part of a systematic study of the positivity bounds derivable from time delays on shockwave backgrounds. First, we discuss shockwaves in field theory, which are infinitely boosted Coulomb-like field configurations. We show how a positive time delay implies positivity of four-derivative operators in scalar field theory and electromagnetism, consistent with the results derived using dispersion relations, and we comment on how additional higher-derivative operators could be included.
We then turn to gravitational shockwave backgrounds. We compute the infinite boost limit of Reissner-Nordström black holes to derive charged shockwave backgrounds. We consider photons traveling on these backgrounds and interacting through four-derivative corrections to Einstein-Maxwell theory. The inclusion of gravity introduces a logarithmic term into the time delay that interferes with the straightforward bounds derivable in pure field theory, a fact consistent with CEMZ and with recent results from dispersion relations. We discuss two ways to extract a physically meaningful quantity from the logarithmic time delay — by introducing an IR cutoff, or by considering the derivative of the time delay — and comment on the bounds implied in each case. Finally, we review a number of additional shockwave backgrounds which might be of use in future applications, including spinning shockwaves, those in higher dimensions or with a cosmological constant, and shockwaves from boosted extended objects.