skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electric shocks: bounding Einstein-Maxwell theory with time delays on boosted RN backgrounds
A<sc>bstract</sc> The requirement that particles propagate causally on non-trivial backgrounds implies interesting constraints on higher-derivative operators. This work is part of a systematic study of the positivity bounds derivable from time delays on shockwave backgrounds. First, we discuss shockwaves in field theory, which are infinitely boosted Coulomb-like field configurations. We show how a positive time delay implies positivity of four-derivative operators in scalar field theory and electromagnetism, consistent with the results derived using dispersion relations, and we comment on how additional higher-derivative operators could be included. We then turn to gravitational shockwave backgrounds. We compute the infinite boost limit of Reissner-Nordström black holes to derive charged shockwave backgrounds. We consider photons traveling on these backgrounds and interacting through four-derivative corrections to Einstein-Maxwell theory. The inclusion of gravity introduces a logarithmic term into the time delay that interferes with the straightforward bounds derivable in pure field theory, a fact consistent with CEMZ and with recent results from dispersion relations. We discuss two ways to extract a physically meaningful quantity from the logarithmic time delay — by introducing an IR cutoff, or by considering the derivative of the time delay — and comment on the bounds implied in each case. Finally, we review a number of additional shockwave backgrounds which might be of use in future applications, including spinning shockwaves, those in higher dimensions or with a cosmological constant, and shockwaves from boosted extended objects.  more » « less
Award ID(s):
2210271
PAR ID:
10517103
Author(s) / Creator(s):
; ;
Publisher / Repository:
JHEP
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2024
Issue:
5
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> Effective field theories are constrained by the requirement that their constituents never move superluminally on non-trivial backgrounds. In this paper, we study time delays experienced by photons propagating on charged shockwave backgrounds in five dimensions. In the absence of gravity — where the shockwaves are electric fields sourced by boosted charges — we derive positivity bounds for the four-derivative corrections to electromagnetism, reproducing previous results derived from scattering amplitudes. By considering the gravitational shockwaves sourced by Reissner-Nordström black holes, we derive new constraints in the presence of gravity. We observe the by-now familiar weakening of positivity bounds in the presence of gravity, but without the logarithmic divergences present in 4d. We find that the strongest bounds appear by examining the time delay near the horizon of the smallest possible black hole, and discuss on the validity of the EFT expansion in this region. We comment on our bounds in the context of the swampland program as well as their relation with the positivity bounds obtained from dispersion relations. 
    more » « less
  2. In the context of anti-de Sitter/conformal field theory , gravitational shockwaves serve as a geometric manifestation of boundary quantum chaos. We study this connection in general diffeomorphism-invariant theories involving an arbitrary number of bosonic fields. Specifically, we demonstrate that theories containing spin-2 or higher-spin fields generally admit classical localized shockwave solutions on black hole backgrounds, whereas spin-0 and spin-1 theories do not. As in the gravitational case, these higher-spin shockwaves provide a means to compute the out-of-time-order correlator. Both the Lyapunov exponent and the butterfly velocity are found to universally agree with predictions from pole skipping. In particular, higher-spin fields lead to a Lyapunov exponent that violates the chaos bound and a butterfly velocity that may exceed the speed of light. 
    more » « less
  3. Shadowgraphic measurements are combined with theory on gas-dynamics to investigate the shock physics associated with nanosecond laser ablation of cerium metal targets. Time-resolved shadowgraphic imaging is performed to measure the propagation and attenuation of the laser-induced shockwave through air and argon atmospheres at various background pressures, where stronger shockwaves characterized by higher propagation velocities are observed for higher ablation laser irradiances and lower pressures. The Rankine-Hugoniot relations are also employed to estimate the pressure, temperature, density, and flow velocity of the shock-heated gas located immediately behind the shock front, predicting larger pressure ratios and higher temperatures for stronger laser-induced shockwaves. 
    more » « less
  4. A bstract It is a long-standing conjecture that any CFT with a large central charge and a large gap ∆ gap in the spectrum of higher-spin single-trace operators must be dual to a local effective field theory in AdS. We prove a sharp form of this conjecture by deriving numerical bounds on bulk Wilson coefficients in terms of ∆ gap using the conformal bootstrap. Our bounds exhibit the scaling in ∆ gap expected from dimensional analysis in the bulk. Our main tools are dispersive sum rules that provide a dictionary between CFT dispersion relations and S-matrix dispersion relations in appropriate limits. This dictionary allows us to apply recently-developed flat-space methods to construct positive CFT functionals. We show how AdS 4 naturally resolves the infrared divergences present in 4D flat-space bounds. Our results imply the validity of twice-subtracted dispersion relations for any S-matrix arising from the flat-space limit of AdS/CFT. 
    more » « less
  5. A<sc>bstract</sc> Positivity bounds represent nontrivial limitations on effective field theories (EFTs) if those EFTs are to be completed into a Lorentz-invariant, causal, local, and unitary framework. While such positivity bounds have been applied in a wide array of physical contexts to obtain useful constraints, their application to inflationary EFTs is subtle since Lorentz invariance is spontaneously broken during cosmic inflation. One path forward is to employ aBreit parameterizationto ensure a crossing-symmetric and analytic S-matrix in theories with broken boosts. We extend this approach to a theory with multiple fields, and uncover a fundamental obstruction that arises unless all fields obey a dispersion relation that is approximately lightlike. We then apply the formalism to various classes of inflationary EFTs, with and without isocurvature perturbations, and employ this parameterization to derive new positivity bounds on such EFTs. For multifield inflation, we also consider bounds originating from the generalized optical theorem and demonstrate how these can give rise to stronger constraints on EFTs compared to constraints from traditional elastic positivity bounds alone. We compute various shapes of non-Gaussianity (NG), involving both adiabatic and isocurvature perturbations, and show how the observational parameter space controlling the strength of NG can be constrained by our bounds. 
    more » « less