skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Status of direct determination of solar neutrino fluxes after Borexino
A<sc>bstract</sc> We determine the solar neutrino fluxes from the global analysis of the most up-to-date terrestrial and solar neutrino data including the final results of the three phases of Borexino. The analysis are performed in the framework of three-neutrino mixing with and without accounting for the solar luminosity constraint. We discuss the independence of the results on the input from the Gallium experiments. The determined fluxes are then compared with the predictions provided by the latest Standard Solar Models. We quantify the dependence of the model comparison with the assumptions about the normalization of the solar neutrino fluxes produced in the CNO-cycle as well as on the particular set of fluxes employed for the model testing.  more » « less
Award ID(s):
2210533
PAR ID:
10509763
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
JHEP
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2024
Issue:
2
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> In this article, we study the potential of direct detection experiments to explore the parameter space of general non-standard neutrino interactions (NSI) via solar neutrino scattering. Due to their sensitivity to neutrino-electron and neutrino-nucleus scattering, direct detection provides a complementary view of the NSI landscape to that of spallation sources and neutrino oscillation experiments. In particular, the large admixture of tau neutrinos in the solar flux makes direct detection experiments well-suited to probe the full flavour space of NSI. To study this, we develop a re-parametrisation of the NSI framework that explicitly includes a variable electron contribution and allows for a clear visualisation of the complementarity of the different experimental sources. Using this new parametrisation, we explore how previous bounds from spallation source and neutrino oscillation experiments are impacted. For the first time, we compute limits on NSI from the first results of the XENONnT and LUX-ZEPLIN experiments, and we obtain projections for future xenon-based experiments. These computations have been performed with our newly developed software package, SNuDD. Our results demonstrate the importance of using a more general NSI parametrisation and indicate that next generation direct detection experiments will become powerful probes of neutrino NSI. 
    more » « less
  2. A<sc>bstract</sc> We explore the complementarity of direct detection (DD) and spallation source (SS) experiments for the study of sterile neutrino physics. We focus on the sterile baryonic neutrino model: an extension of the Standard Model that introduces a massive sterile neutrino with couplings to the quark sector via a new gauge boson. In this scenario, the inelastic scattering of an active neutrino with the target material in both DD and SS experiments gives rise to a characteristic nuclear recoil energy spectrum that can allow for the reconstruction of the neutrino mass in the event of a positive detection. We first derive new bounds on this model based on the data from the COHERENT collaboration on CsI and LAr targets, which we find do not yet probe new areas of the parameter space. We then assess how well future SS experiments will be able to measure the sterile neutrino mass and mixings, showing that masses in the range ~15 − 50 MeV can be reconstructed. We show that there is a degeneracy in the measurement of the sterile neutrino mixing that substantially affects the reconstruction of parameters for masses of the order of 40 MeV. Thanks to their lower energy threshold and sensitivity to the solar tau neutrino flux, DD experiments allow us to partially lift the degeneracy in the sterile neutrino mixings and considerably improve its mass reconstruction down to 9 MeV. Our results demonstrate the excellent complementarity between DD and SS experiments in measuring the sterile neutrino mass and highlight the power of DD experiments in searching for new physics in the neutrino sector. 
    more » « less
  3. Abstract The Jiangmen Underground Neutrino Observatory (JUNO), the first multi-kton liquid scintillator detector, which is under construction in China, will have a unique potential to perform a real-time measurement of solar neutrinos well below the few MeV threshold typical of Water Cherenkov detectors. JUNO's large target mass and excellent energy resolution are prerequisites for reaching unprecedented levels of precision. In this paper, we provide estimation of the JUNO sensitivity to7Be,pep, and CNO solar neutrinos that can be obtained via a spectral analysis above the 0.45 MeV threshold. This study is performed assuming different scenarios of the liquid scintillator radiopurity, ranging from the most optimistic one corresponding to the radiopurity levels obtained by the Borexino experiment, up to the minimum requirements needed to perform the neutrino mass ordering determination with reactor antineutrinos — the main goal of JUNO. Our study shows that in most scenarios, JUNO will be able to improve the current best measurements on7Be,pep, and CNO solar neutrino fluxes. We also perform a study on the JUNO capability to detect periodical time variations in the solar neutrino flux, such as the day-night modulation induced by neutrino flavor regeneration in Earth, and the modulations induced by temperature changes driven by helioseismic waves. 
    more » « less
  4. A<sc>bstract</sc> We derive new constraints on effective four-fermion neutrino non-standard interactions with both quarks and electrons. This is done through the global analysis of neutrino oscillation data and measurements of coherent elastic neutrino-nucleus scattering (CEνNS) obtained with different nuclei. In doing so, we include not only the effects of new physics on neutrino propagation but also on the detection cross section in neutrino experiments which are sensitive to the new physics. We consider both vector and axial-vector neutral-current neutrino interactions and, for each case, we include simultaneously all allowed effective operators in flavour space. To this end, we use the most general parametrization for their Wilson coefficients under the assumption that their neutrino flavour structure is independent of the charged fermion participating in the interaction. The status of the LMA-D solution is assessed for the first time in the case of new interactions taking place simultaneously with up quarks, down quarks, and electrons. One of the main results of our work are the presently allowed regions for the effective combinations of non-standard neutrino couplings, relevant for long-baseline and atmospheric neutrino oscillation experiments. 
    more » « less
  5. A<sc>bstract</sc> The neutrino force results from the exchange of a pair of neutrinos. A neutrino background can significantly influence this force. In this work, we present a comprehensive calculation of the neutrino force in various neutrino backgrounds with spin dependence taken into account. In particular, we calculate the spin-independent and spin-dependent parity-conserving neutrino forces, in addition to the spin-dependent parity-violating neutrino forces with and without the presence of a neutrino background for both isotropic and anisotropic backgrounds. Compared with the vacuum case, the neutrino background can effectively violate Lorentz invariance and lead to additional parity-violating terms that are not suppressed by the velocity of external particles. We estimate the magnitude of the effect of atomic parity-violation experiments, and it turns out to be well below the current experimental sensitivity. 
    more » « less