skip to main content


Title: (0, 4) Projective superspaces. Part I. Interacting linear sigma models
A<sc>bstract</sc>

We describe the projective superspace approach to supersymmetric models with off-shell (0, 4) supersymmetry in two dimensions. In addition to the usual superspace coordinates, projective superspace has extra bosonic variables — one doublet for each SU(2) in the R-symmetry SU(2) × SU(2) which are interpreted as homogeneous coordinates onCP1×CP1. The superfields are analytic in theCP1coordinates and this analyticity plays an important role in our description. For instance, it leads to stringent constraints on the interactions one can write down for a given superfield content of the model. As an example, we describe in projective superspace Witten’s ADHM sigma model — a linear sigma model with non-derivative interactions whose target isR4with a Yang-Mills instanton solution. The hyperkähler nature of target space and the twistor description of instantons by Ward, and Atiyah, Hitchin, Drinfeld and Manin are natural outputs of our construction.

 
more » « less
Award ID(s):
2210533
PAR ID:
10509771
Author(s) / Creator(s):
;
Publisher / Repository:
JHEP
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2023
Issue:
7
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Exploration of the reduction chemistry of the 2,2’‐bipyridine (bipy) lanthanide metallocene complexes Cp*2LnCl(bipy) and Cp*2Ln(bipy) (Cp* = C5Me5) resulted in the isolation of a series of complexes with unusual composition and structure including complexes with a single Cp* ligand, multiple azide ligands, and bipy ligands with close parallel orientations. These results not only reveal new structural types, but they also show the diverse chemistry displayed by this redox‐active platform. Treatment of Cp*2NdCl(bipy) with excess KC8resulted in the formation of the mono‐Cp* Nd(III) complex, [K(crypt)]2[Cp*Nd(bipy)2],1, as well as [K(crypt)][Cp*2NdCl2],2, and the previously reported [K(crypt)][Cp*2Nd(bipy)]. A mono‐Cp* Lu(III) complex, Cp*Lu(bipy)2,3, was also found in an attempt to make Cp*2Lu(bipy) from LuCl3, 2 equiv. of KCp*, bipy, and K/KI. Surprisingly, the (bipy)1−ligands in neighboring molecules in the structure of3are oriented in a parallel fashion with intermolecular C⋅⋅⋅C distances of 3.289(4) Å, which are shorter than the sum of van der Waals radii of two carbon atoms, 3.4 Å. Another product with one Cp* ligand per lanthanide was isolated from the reaction of [K(crypt)][Cp*2Eu(bipy)] with azobenzene, which afforded the dimeric Eu(II) complex, [K(crypt)]2[Cp*Eu(THF)(PhNNPh)]2,4. Attempts to make4from the reaction between Cp*2Eu(THF)2and a reduced azobenzene anion generated instead the mixed‐valent Eu(III)/Eu(II) complex, [K(crypt)][Cp*Eu(THF)(PhNNPh)]2,5, which allows direct comparison with the bimetallic Eu(II) complex4. Mono‐Cp* complexes of Yb(III) are obtained from reactions of the Yb(II) complex, [K(crypt)][Cp*2Yb(bipy)], with trimethylsilylazide, which afforded the tetra‐azido [K(crypt)]2[Cp*Yb(N3)4],6, or the di‐azido complex [K(crypt)]2[Cp*Yb(N3)2(bipy)],7 a, depending on the reaction stoichiometry. A mono‐Cp* Yb(III) complex is also isolated from reaction of [K(crypt)][Cp*2Yb(bipy)] with elemental sulfur which forms the mixed polysulfido Yb(III) complex [K(crypt)]2[Cp*Yb(S4)(S5)],8 a. In contrast to these reactions that form mono‐Cp* products, reduction of Cp*2Yb(bipy) with 1 equiv. of KC8in the presence of 18‐crown‐6 resulted in the complete loss of Cp* ligands and the formation of [K(18‐c‐6)(THF)][Yb(bipy)4],9. The (bipy)1−ligands of9are arranged in a parallel orientation, as observed in the structure of3, except in this case this interaction is intramolecular and involves pairs of ligands bound to the same Yb atom. Attempts to reduce further the Sm(II) (bipy)1−complex, Cp*2Sm(bipy) with 2 equiv. of KC8in the presence of excess 18‐crown‐6 led to the isolation of a Sm(III) salt of (bipy)2−with an inverse sandwich Cp* counter‐cation and a co‐crystallized K(18‐c‐6)Cp* unit, [K2(18‐c‐6)2Cp*]2[Cp*2Sm(bipy)]2 ⋅ [K(18‐c‐6)Cp*],10.

     
    more » « less
  2. Abstract

    Over the years, polynuclear cyclic or torus complexes have attracted increasing interest due to their unique metal topologies and properties. However, the isolation of polynuclear cyclic organometallic complexes is extremely challenging due to their inherent reactivity, which stems from the labile and reactive metal‐carbon bonds. In this study, the pyrazine ligand undergoes a radical‐radical cross‐coupling reaction leading to the formation of a decanuclear [(Cp*)20Dy10(L1)10] ⋅ 12(C7H8) (1; where L1 = anion of 2‐prop‐2‐enyl‐2H‐pyrazine; Cp* = pentamethylcyclopentadienyl) complex, where all DyIIImetal centres are bridged by the anionic L1 ligand. Amongst the family of polynuclear Ln organometallic complexes bearing CpR2Lnxunits (CpR= substituted cyclopentadienyl),1features the highest nuclearity obtained to date. In‐depth computational studies were conducted to elucidate the proposed reaction mechanism and formation of L1, while probing of the magnetic properties of1, revealed slow magnetic relaxation upon application of a static dc field.

     
    more » « less
  3. Abstract

    The synthesis and first structural characterization of the [K(18‐crown‐6)] bismolyl Bitet(C4Me4Bi) contact ion pair (1) is presented. Notably, according to Natural Resonance Theory calculations, the Bitetanion of1features two types of leading mesomeric structures with localized anionic charge and two lone pairs of electrons at the BiIcenter, as well as delocalized anionic charge in the π‐conjugated C4Bi ring. The lone pairs at Bi enable a unique bridging coordination mode of the bismolyl ligand, as shown for the first rare earth metal bismolyl complex (Cptet2Y)2(μ‐η1‐Bitet)2(2). The latter results from the salt metathesis reaction of KBitetwith Cptet2Y(BPh4) (Cptet=C5Me4H). The Y‐Bi bonding interaction in2of 16.6 % covalency at yttrium is remarkably large.

     
    more » « less
  4. Abstract

    Biochemical methods can reveal stable protein‐protein interactions occurring within cells, but the ability to observe transient events and to visualize the subcellular localization of protein‐protein interactions in cells and tissues in situ provides important additional information. The Proximity Ligation Assay®(PLA) offers the opportunity to visualize the subcellular location of such interactions at endogenous protein levels, provided that the probes that recognize the target proteins are within 40 nm. This sensitive technique not only elucidates protein‐protein interactions, but also can reveal post‐translational protein modifications. The technique is useful even in cases where material is limited, such as when paraffin‐embedded clinical specimens are the only available material, as well as after experimental intervention in 2D and 3D model systems. Here we describe the basic protocol for using the commercially available Proximity Ligation Assay™ materials (Sigma‐Aldrich, St. Louis, MO), and incorporate details to aid the researcher in successfully performing the experiments. © 2020 Wiley Periodicals LLC.

    Basic Protocol 1: Proximity ligation assay

    Support Protocol 1: Antigen retrieval method for formalin‐fixed, paraffin‐embedded tissues

    Support Protocol 2: Creation of custom PLA probes using the Duolink™ In Situ Probemaker Kit when commercially available probes are not suitable

    Basic Protocol 2: Imaging, quantification, and analysis of PLA signals

     
    more » « less
  5. A<sc>bstract</sc>

    We generalize Coulomb-branch-based gauged linear sigma model (GLSM)–computations of quantum cohomology rings of Fano spaces. Typically such computations have focused on GLSMs without superpotential, for which the low energy limit of the GLSM is a pure Coulomb branch, and quantum cohomology is determined by the critical locus of a twisted one-loop effective superpotential. We extend these results to cases for which the low energy limit of the GLSM includes both Coulomb and Higgs branches, where the latter is a Landau-Ginzburg orbifold. We describe the state spaces and products of corresponding operators in detail, comparing a geometric phase description, where the operator product ring is quantum cohomology, to the description in terms of Coulomb and Higgs branch states. As a concrete test of our methods, we compare to existing mathematics results for quantum cohomology rings of hypersurfaces in projective spaces.

     
    more » « less