skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Characterizing student argument justifications in small group sociotechnical discussions
There have been increased calls to include sociotechnical thinking–grappling with issues of power, history, and culture–throughout the undergraduate engineering curriculum. One way this more expansive framing of engineering has been integrated into engineering courses is through in-class discussions. There is a need to understand what students are attending to in these conversations. In particular, we are interested in how students frame and justify their arguments in small-group discussions. This study is part of an NSF-funded research project to implement and study integrating sociotechnical components throughout a first-year computing for engineers course. In one iteration of the revised course, each week students read a news article on a current example of the uneven impacts of technology, then engaged in in-class small-group discussions. In this study, we analyze students’ discourse to answer the research questions: What arguments do students use to argue against the use of a technology? How do these arguments relate to common narratives about technology? In this qualitative case study, we analyzed videorecordings of the small group discussions of two focus groups discussing the use of AI in hiring. We looked closely at the justifications students gave for their stated positions and how they relate to the common narratives of technocracy, free market idealism, technological neutrality, and technological determinism. We found all students in both groups rejected these common narratives. We saw students argue that (1) AI technology does not solve the hiring problem well, (2) it is important to regulate AI, (3) using AI for hiring will stagnate diversity, and (4) using AI for hiring unfairly privileges some groups of people over others. While students in both groups rejected the common narratives, only one group explicitly centered those who are harmed and how this harm would likely occur, and this group did so consistently. The other group managed to consistently reject the narratives using vague, safe language and never explicitly mentioned who is harmed by the technology. As a result, only one group’s discussion was clearly centered on justice concerns. These results have implications for how to scaffold small group sociotechnical discussions, what instructors should attend to during these discussions, and how to support students to orient toward systemic impacts and sustain a focus on justice.  more » « less
Award ID(s):
2110727
PAR ID:
10509838
Author(s) / Creator(s):
;
Publisher / Repository:
Annual ASEE Conference and Exhibition
Date Published:
Format(s):
Medium: X
Location:
Baltimore, Maryland
Sponsoring Org:
National Science Foundation
More Like this
  1. Concerns about technocentric undergraduate engineering courses have now become widely disseminated. As a result, universities are diligently working to include more sociotechnical content in formerly purely-technical courses, with the goal of engaging students in recognizing and analyzing the economic, political, and social impacts of technology. In the U.S., many of the focus topics for this sociotechnical content are grounded in a U.S. context, requiring an understanding of the history and current state of racial and economic power structures. While U.S. residents are likely familiar with these structures, it is important to consider how these topics are encountered by international students. This case study on international student experience is part of a larger NSF-funded research project exploring integrating sociotechnical topics in a first-year engineering computing course. The revised course included weekly readings followed by small-group discussions on curriculum-aligned real-world justice topics. This work in progress study analyzes post-course student interviews of six international students of color to understand their experiences in this course. We use a qualitative case study approach to analyze these interviews, drawing heavily from work in identity (e.g., Berhane, Secules, & Onuma, 2020), being careful to take an intersectional lens (e.g., Ross, Capobianco, & Godwin, 2017). We draw heavily from the emergent framework of Learning Race in the U.S. Context (Fries-Britt, Mwangi, & Peralta, 2014). We focus on the unique challenges for international students as they navigate justice discourse in the U.S. context. Our examination of international student interviews illuminated conflicts between international students’ self-identity and what they felt they were expected to know and have experienced. Most first-year international students of color reported strong identities as international students and did not identify as strongly with their racial/ethnic groups. They felt they were lacking U.S. racial context, including both knowledge of the history of U.S. racial relations and lived experiences within these systems. At the same time, there is evidence that other students in the classes positioned the international students of color as experts in racial relations in the U.S., looking to them to share personal experiences or for approval of what other students were sharing. Without essentializing these particular international students’ experiences, we hope to draw attention to the social dynamics encountered during sociotechnical lessons and the potential for marginalization of the international student population. 
    more » « less
  2. The Improving Students’ Sociotechnical Literacy in Engineering project aims to integrate social justice topics with technical knowledge in a first-year engineering course. The approach involves redesigning an existing intro to computing course with justice-based activities, supported by an Equity Learning Assistant (ELA) program. This program trains upperclass students to facilitate in-class discussions on equity and social justice. The project targets improvements in students' critical sociotechnical literacy and engineering identity. Activities include analyzing ethically complex data sets and developing equity-focused projects, while encouraging students to integrate social, economic, and political dimensions into their engineering work. This initiative spans four years (one pilot year plus three NSF-funded iterations) and involves a multidisciplinary research team of engineers and education researchers. 
    more » « less
  3. The social/technical dualism in the engineering curriculum leaves students ill-prepared to tackle real-world technical problems in their social, economic, and political contexts (Cech, 2013; Faulkner, 2007; Trevelan, 2010, 2014). Increasingly, students have expressed the desire for their technical courses to show the interplay between social and technical considerations (Leydens & Lucena, 2017), but they have few opportunities to develop these sociotechnical ways of thinking (i.e., values, attitudes, and skills that integrate the social and technical). Instead, students are left to infer engineering as technically neutral through the instructional decisions that make up an engineering curriculum (Cech, 2013; Trevelan, 2014). In this study, we focus on how students understand the role of sociotechnical thinking in engineering. Particularly, this study centers seven minoritized students in an introductory engineering computation class who are pursuing an engineering degree. The study takes place at a medium private university in New England. These seven students are from a group of roughly seventy students split between two of the five sections for the course. These two sections were recently revised to include more sociotechnical readings, discussions, and homework facilitated with learning assistants. We are interested in understanding the self-described sense of belonging that these students feel as they relate it to learning about engineering as a sociotechnical field. While the dualism between engineering's technical and social dimensions has been studied in ASEE LEES papers, articles in Engineering Studies, broader engineering education research, and Science, Technology, and Science publications (e.g., Cech, 2013; Faulkner, 2007; Leydens & Lucena, 2017; Riley, 2017; Wisnioski, 2012), there is a need to connect this vast literature with the similarly extensive research on students' sense of belonging and engineering identity development, specifically for those students who have historically been excluded from engineering. Specifically, we draw on W.E.B. DuBois's notion of a 'double consciousness' from the Souls of Black Folks (1903) as a lens through which to understand how these seven students take on the political, economic, and social dimensions presented to them through a first-year engineering curricular redesign around engineering as sociotechnical. We note the small-n design of this study (Slaton & Pawley, 2018). The seven interviewed students are gender and racial minorities in engineering. However, we note that they do not represent all minoritized students in engineering, and to respect and elevate their experiences, we take a narrative approach. This study is intended to center the perspectives and experiences of these seven students as they navigate an engineering learning environment. We do not intend for the findings to be generalizable or exhaustive but informative as we think about scaling up the sociotechnical curricular redesign in engineering at this university and more broadly. 
    more » « less
  4. As engineers shape the future of technology and society, embedding human rights into engineering education is essential for fostering ethical practices, enhancing access to technological benefits, and addressing harm caused by engineered products or processes. This research will examine the attitudes of engineering students toward human rights and will explore the effectiveness of targeted educational interventions in fostering a deeper understanding of the intersection between engineering and human rights principles. Conducted with a senior design engineering class, the research will use pre- and post-intervention surveys to measure changes in students’ perceptions. The intervention consists of asynchronous online modules that integrate foundational human rights concepts with practical engineering applications, including sustainability, ethics, and social justice. The modules are organized around six key clusters, but this poster focuses on cybersecurity, privacy, and human vulnerability. Using a case study of Emancipatory AI, the poster highlights its potential to empower marginalized groups by breaking down barriers to technology access. This case study illustrates how human rights principles, including equity and accessibility, can guide the ethical development and application of AI to address systemic inequalities and promote social inclusion. We aim for this poster to encourage reflection on the role of human rights in engineering and the ways AI can be leveraged as a tool for the social good. This work reinforces the importance of integrating human rights considerations into engineering practice to create more inclusive and just technological solutions. 
    more » « less
  5. The greatest challenges for contemporary and future natural resource production are sociotechnical by nature, from public perceptions of mining to responsible mineral supply chains. The term sociotechnical signals that engineered systems have inherent social dimensions that require careful analysis. Sociotechnical thinking is a prerequisite for understanding and promoting social justice and sustainability through one’s professional practices. This article investigates whether and how two different projects enhanced sociotechnical learning in mining and petroleum engineering students. Assessment surveys suggest that most students ended the projects with greater appreciation for sociotechnical perspectives on the interconnection of engineering and corporate social responsibility (CSR). This suggests that undergraduate engineering education can be a generative place to prepare future professionals to see how engineering can promote social and environmental wellbeing. Comparing the different groups of students points to the power of authentic learning experiences with industry engineers and interdisciplinary teaching by faculty. 
    more » « less