skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Diffeomorphism Covariance and the Quantum Schwarzschild Interior
We introduce a notion of residual diffeomorphism covariance in quantum Kantowski–Sachs (KS) describing the interior of a Schwarzschild black hole. We solve for the family of Hamiltonian constraint operators satisfying the associated covariance condition, as well as parity invariance, preservation of the Bohr Hilbert space of the Loop Quantum KS and a correct (naïve) classical limit. We further explore the imposition of minimality for the number of terms and compare the solution with those of other Hamiltonian constraints proposed for the Loop Quantum KS in the literature. In particular, we discuss a lapse that was recently commonly chosen due to the resulting decoupling of the evolution of the two degrees of freedom and the exact solubility of the model. We show that such a choice of lapse can indeed be quantized as an operator that is densely defined on the Bohr Hilbert space and that any such operator must include an infinite number of shift operators.  more » « less
Award ID(s):
2110234
PAR ID:
10509889
Author(s) / Creator(s):
; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Universe
Volume:
10
Issue:
2
ISSN:
2218-1997
Page Range / eLocation ID:
89
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bambi, Cosimo; Modesto, Leonardo; Shapiro, Ilya (Ed.)
    We summarize our work on spherically symmetric midi-superspaces in loop quantum gravity. Our approach is based on using inhomogeneous slicings that may penetrate the horizon in case there is one and on a redefinition of the constraints so the Hamiltonian has an Abelian algebra with itself. We discuss basic and improved quantizations as is done in loop quantum cosmology. We discuss the use of parameterized Dirac observables to define operators associated with kinematical variables in the physical space of states, as a first step to introduce an operator associated with the space-time metric. We analyze the elimination of singularities and how they are replaced by extensions of the space-times. We discuss the charged case and potential observational consequences in quasinormal modes. We also analyze the covariance of the approach. Finally, we comment on other recent approaches of quantum black holes, including mini-superspaces motivated by loop quantum gravity. 
    more » « less
  2. Despite its long history, a canonical formulation of quantum ergodicity that applies to general classes of quantum dynamics, including driven systems, has not been fully established. Here we introduce and study a notion of quantum ergodicity for closed systems with time-dependent Hamiltonians, defined as statistical randomness exhibited in their longtime dynamics. Concretely, we consider the temporal ensemble of quantum states (time-evolution operators) generated by the evolution, and investigate the conditions necessary for them to be statistically indistinguishable from uniformly random states (operators) in the Hilbert space (space of unitaries). We find that the number of driving frequencies underlying the Hamiltonian needs to be sufficiently large for this to occur. Conversely, we show that statistical —indistinguishability up to some large but finite moment—can already be achieved by a quantum system driven with a single frequency, i.e., a Floquet system, as long as the driving period is sufficiently long. Our work relates the complexity of a time-dependent Hamiltonian and that of the resulting quantum dynamics, and offers a fresh perspective to the established topics of quantum ergodicity and chaos from the lens of quantum information. Published by the American Physical Society2024 
    more » « less
  3. The dynamics of quantum systems unfolds within a subspace of the state space or operator space, known as the Krylov space. This review presents the use of Krylov subspace methods to provide an efficient description of quantum evolution and quantum chaos, with emphasis on nonequilibrium phenomena of many-body systems with a large Hilbert space. It provides a comprehensive update of recent developments, focused on the quantum evolution of operators in the Heisenberg picture as well as pure and mixed states. It further explores the notion of Krylov complexity and associated metrics as tools for quantifying operator growth, their bounds by generalized quantum speed limits, the universal operator growth hypothesis, and its relation to quantum chaos, scrambling, and generalized coherent states. A comparison of several generalizations of the Krylov construction for open quantum systems is presented. A closing discussion addresses the application of Krylov subspace methods in quantum field theory, holog- raphy, integrability, quantum control, and quantum computing, as well as current open problems. 
    more » « less
  4. Symmetry algebras of quantum many-body systems with locality can be understood using commutant algebras, which are defined as algebras of operators that commute with a given set of local operators. In this work, we show that these symmetry algebras can be expressed as frustration-free ground states of a local superoperator, which we refer to as a “super-Hamiltonian.” We demonstrate this for conventional symmetries such as Z 2 , U ( 1 ) , and S U ( 2 ) , where the symmetry algebras map to various kinds of ferromagnetic ground states, as well as for unconventional ones that lead to weak ergodicity-breaking phenomena of Hilbert-space fragmentation (HSF) and quantum many-body scars. In addition, we show that the low-energy excitations of this super-Hamiltonian can be understood as approximate symmetries, which in turn are related to slowly relaxing hydrodynamic modes in symmetric systems. This connection is made precise by relating the super-Hamiltonian to the superoperator that governs the operator relaxation in noisy symmetric Brownian circuits and this physical interpretation also provides a novel interpretation for Mazur bounds for autocorrelation functions. We find examples of gapped (gapless) super-Hamiltonians indicating the absence (presence) of slow modes, which happens in the presence of discrete (continuous) symmetries. In the gapless cases, we recover hydrodynamic modes such as diffusion, tracer diffusion, and asymptotic scars in the presence of U ( 1 ) symmetry, HSF, and a tower of quantum scars, respectively. In all, this demonstrates the power of the commutant-algebra framework in obtaining a comprehensive understanding of exact symmetries and associated approximate symmetries and hydrodynamic modes, and their dynamical consequences in systems with locality. Published by the American Physical Society2024 
    more » « less
  5. In quantum many-body systems, complex dynamics delocalize the physical degrees of freedom. This spreading of information throughout the system has been extensively studied in relation to quantum thermalization, scrambling, and chaos. Locality is typically defined with respect to a tensor product structure (TPS) which identifies the local subsystems of the quantum system. In this paper, we investigate a simple geometric measure of operator spreading by quantifying the distance of the space of local operators from itself evolved under a unitary channel. We show that this TPS distance is related to the scrambling properties of the dynamics between the local subsystems and coincides with the entangling power of the dynamics in the case of a symmetric bipartition. Additionally, we provide sufficient conditions for the maximization of the TPS distance and show that the class of 2-unitaries provides examples of dynamics that achieve this maximal value. For Hamiltonian evolutions at short times, the characteristic timescale of the TPS distance depends on scrambling rates determined by the strength of interactions between the local subsystems. Beyond this short-time regime, the behavior of the TPS distance is explored through numerical simulations of prototypical models exhibiting distinct ergodic properties, ranging from quantum chaos and integrability to Hilbert space fragmentation and localization. 
    more » « less