skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2110234

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this paper, we construct the phase space of a constantly curved tetrahedron with fixed triangle areas in terms of a pair of Darboux coordinates called the length and twist coordinates, which are in analogy to the Fenchel-Nielsen coordinates for flat connections, and their quantization. The curvature is identified to the value of the cosmological constant, either positive or negative. The physical Hilbert space is given by the $$\mathcal{U}_q(\mathfrak{su}(2))$$ intertwiner space. We show that the quantum trace of quantum monodromies, defining the quantum length operators, form a fusion algebra and describe their representation theory. We also construct the coherent states in the physical Hilbert space labeled by the length and twist coordinates. These coherent states describe quantum curved tetrahedra and peak at points of the tetrahedron phase space. This work is closely related to 3+1 dimensional Loop Quantum Gravity with a non-vanishing cosmological constant. The coherent states constructed herein serve as good candidates for the application to the spinfoam model with a cosmological constant. 
    more » « less
  2. Abstract In this paper, we develop a quantum theory of homogeneously curved tetrahedron geometry, by applying the combinatorial quantization to the phase space of tetrahedron shapes defined in Haggardet al(2016Ann. Henri Poincaré172001–48). Our method is based on the relation between this phase space and the moduli space of SU(2) flat connections on a 4-punctured sphere. The quantization results in the physical Hilbert space as the solution of the quantum closure constraint, which quantizes the classical closure condition M 4 M 3 M 2 M 1 = 1 , M ν SU ( 2 ) , for the homogeneously curved tetrahedron. The quantum group U q ( su ( 2 ) ) emerges as the gauge symmetry of a quantum tetrahedron. The physical Hilbert space of the quantum tetrahedron coincides with the Hilbert space of 4-valent intertwiners of U q ( su ( 2 ) ) . In addition, we define the area operators quantizing the face areas of the tetrahedron and compute the spectrum. The resulting spectrum is consistent with the usual Loop-Quantum-Gravity area spectrum in the large spin regime but is different for small spins. This work closely relates to 3+1 dimensional Loop Quantum Gravity in presence of cosmological constant and provides a justification for the emergence of quantum group in the theory. 
    more » « less
  3. We introduce a notion of residual diffeomorphism covariance in quantum Kantowski–Sachs (KS) describing the interior of a Schwarzschild black hole. We solve for the family of Hamiltonian constraint operators satisfying the associated covariance condition, as well as parity invariance, preservation of the Bohr Hilbert space of the Loop Quantum KS and a correct (naïve) classical limit. We further explore the imposition of minimality for the number of terms and compare the solution with those of other Hamiltonian constraints proposed for the Loop Quantum KS in the literature. In particular, we discuss a lapse that was recently commonly chosen due to the resulting decoupling of the evolution of the two degrees of freedom and the exact solubility of the model. We show that such a choice of lapse can indeed be quantized as an operator that is densely defined on the Bohr Hilbert space and that any such operator must include an infinite number of shift operators. 
    more » « less
  4. Abstract We shed some light on the reason why the accidental flatness constraint appears in certain limits of the amplitudes of covariant loop quantum gravity. We show why this constraint is harmless, by displaying how analogous accidental constraints appear in transition amplitudes of simple systems, when certain limits are considered. 
    more » « less
  5. Abstract The authors previously introduced a diffeomorphism-invariant definition of a homogeneous and isotropic sector of loop quantum gravity (LQG), along with a program to embed loop quantum cosmology (LQC) into it. The present paper works out that program in detail for the simpler, but still physically non-trivial, case where the target of the embedding is the homogeneous, but not isotropic, Bianchi I model. The diffeomorphism-invariant conditions imposing homogeneity and isotropy in the full theory reduce to conditions imposing isotropy on an already homogeneous Bianchi I spacetime. The reduced conditions are invariant under the residual diffeomorphisms still allowed after gauge fixing the Bianchi I model. We show that there is a unique embedding of the quantum isotropic model into the homogeneous quantum Bianchi I model that (a) is covariant with respect to the actions of such residual diffeomorphisms, and (b) intertwines both the (signed) volume operator and at least one directional Hubble rate. That embedding also intertwines all other operators of interest in the respective loop quantum cosmological models, including their Hamiltonian constraints. It thus establishes a precise equivalence between dynamics in the isotropic sector of the Bianchi I model and the quantized isotropic model, and not just their kinematics. We also discuss the adjoint relationship between the embedding map defined here and a projection map previously defined by Ashtekar and Wilson-Ewing. Finally, we highlight certain features that simplify this reduced embedding problem, but which may not have direct analogues in the embedding of homogeneous and isotropic LQC into full LQG. 
    more » « less