skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Development of broad modulus profile upon polymer–polymer interface formation between immiscible glassy–rubbery domains
Interfaces of glassy materials such as thin films, blends, and composites create strong unidirectional gradients to the local heterogeneous dynamics that can be used to elucidate the length scales and mechanisms associated with the dynamic heterogeneity of glasses. We focus on bilayer films of two different polymers with very different glass transition temperatures ( T g ) where previous work has demonstrated a long-range (∼200 nm) profile in local T g ( z ) is established between immiscible glassy and rubbery polymer domains when the polymer–polymer interface is formed to equilibrium. Here, we demonstrate that an equally long-ranged gradient in local modulus G ~ ( z ) is established when the polymer–polymer interface ( 5 nm) is formed between domains of glassy polystyrene (PS) and rubbery poly(butadiene) (PB), consistent with previous reports of a broad T g ( z ) profile in this system. A continuum physics model for the shear wave propagation caused by a quartz crystal microbalance across a PB/PS bilayer film is used to measure the viscoelastic properties of the bilayer during the evolution of the PB/PS interface showing the development of a broad gradient in local modulus G ~ ( z ) spanning 180 nm between the glassy and rubbery domains of PS and PB. We suggest these broad profiles in T g ( z ) and G ~ ( z ) arise from a coupling of the spectrum of vibrational modes across the polymer–polymer interface as a result of acoustic impedance matching of sound waves with λ 5 nm during interface broadening that can then trigger density fluctuations in the neighboring domain.  more » « less
Award ID(s):
1905782
PAR ID:
10510014
Author(s) / Creator(s):
; ;
Publisher / Repository:
PNAS
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
121
Issue:
1
ISSN:
0027-8424
Page Range / eLocation ID:
e2312533120
Subject(s) / Keyword(s):
glasses, interfacial perturbations, polymer-polymer interfaces, modulus, quartz crystal microbalance
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Cosmic reionization was the last major phase transition of hydrogen from neutral to highly ionized in the intergalactic medium (IGM). Current observations show that the IGM is significantly neutral atz> 7 and largely ionized byz∼ 5.5. However, most methods to measure the IGM neutral fraction are highly model dependent and are limited to when the volume-averaged neutral fraction of the IGM is either relatively low ( x ¯ H I 10 3 ) or close to unity ( x ¯ H I 1 ). In particular, the neutral fraction evolution of the IGM at the critical redshift range ofz= 6–7 is poorly constrained. We present new constraints on x ¯ H I atz∼ 5.1–6.8 by analyzing deep optical spectra of 53 quasars at 5.73 <z< 7.09. We derive model-independent upper limits on the neutral hydrogen fraction based on the fraction of “dark” pixels identified in the Lyαand Lyβforests, without any assumptions on the IGM model or the intrinsic shape of the quasar continuum. They are the first model-independent constraints on the IGM neutral hydrogen fraction atz∼ 6.2–6.8 using quasar absorption measurements. Our results give upper limits of x ¯ H I ( z = 6.3 ) < 0.79 ± 0.04 (1σ), x ¯ H I ( z = 6.5 ) < 0.87 ± 0.03 (1σ), and x ¯ H I ( z = 6.7 ) < 0.94 0.09 + 0.06 (1σ). The dark pixel fractions atz> 6.1 are consistent with the redshift evolution of the neutral fraction of the IGM derived from Planck 2018. 
    more » « less
  2. Abstract A search for resonances in top quark pair ( t t ) production in final states with two charged leptons and multiple jets is presented, based on proton–proton collision data collected by the CMS experiment at the CERN LHC at s = 13 TeV , corresponding to 138 fb−1. The analysis explores the invariant mass of the t t system and two angular observables that provide direct access to the correlation of top quark and antiquark spins. A significant excess of events is observed near the kinematic t t threshold compared to the non-resonant production predicted by fixed-order perturbative quantum chromodynamics (pQCD). The observed enhancement is consistent with the production of a color-singlet pseudoscalar ( 1 S 0 [ 1 ] ) quasi-bound toponium state, as predicted by non-relativistic quantum chromodynamics. Using a simplified model for 1 S 0 [ 1 ] toponium, the cross section of the excess above the pQCD prediction is measured to be 8.8 1.4 + 1.2 pb
    more » « less
  3. We study ν μ ν s and ν ¯ μ ν ¯ s mixing in the protoneutron star (PNS) created in a core-collapse supernova (CCSN). We point out the importance of the feedback on the general composition of the PNS in addition to the obvious feedback on the ν μ lepton number. We show that for our adopted mixing parameters δ m 2 10 2 keV 2 and sin 2 2 θ consistent with the current constraints, sterile neutrino production is dominated by the Mikheyev–Smirnov–Wolfenstein conversion of ν ¯ μ into ν ¯ s and that the subsequent escape of ν ¯ s increases the ν μ lepton number, which in turn enhances muonization of the PNS primarily through ν μ + n p + μ . While these results are qualitatively robust, their quantitative effects on the dynamics and active neutrino emission of core-collapse supernovae should be evaluated by including ν μ ν s and ν ¯ μ ν ¯ s mixing in the simulations. Published by the American Physical Society2024 
    more » « less
  4. The ratio of branching fractions R ( D * ) = B ( B ¯ D * τ ν ¯ τ ) / B ( B ¯ D * ν ¯ ) , where is an electron or muon, is measured using a Belle II data sample with an integrated luminosity of 189 fb 1 at the SuperKEKB asymmetric-energy e + e collider. Data is collected at the ϒ ( 4 S ) resonance, and one B meson in the ϒ ( 4 S ) B B ¯ decay is fully reconstructed in hadronic decay modes. The accompanying signal B meson is reconstructed as B ¯ D * τ ν ¯ τ using leptonic τ decays. The normalization decay, B ¯ D * ν ¯ , produces the same observable final-state particles. The ratio of branching fractions is extracted in a simultaneous fit to two signal-discriminating variables in both channels and yields R ( D * ) = 0.262 0.039 + 0.041 ( stat ) 0.032 + 0.035 ( syst ) . This result is consistent with the current world average and with Standard Model predictions. Published by the American Physical Society2024 
    more » « less
  5. We report the results of the first search for B decays to the Ξ ¯ c 0 Λ ¯ c final state using 711 fb 1 of data collected at the ϒ ( 4 S ) resonance with the Belle detector at the KEKB asymmetric-energy e + e collider. The results are interpreted in terms of both direct baryon-number-violating B decay and Ξ c 0 Ξ ¯ c 0 oscillations which follow the standard model decay B Ξ c 0 Λ ¯ c . We observe no evidence for baryon number violation and set the 95% confidence-level upper limits on the ratio of baryon-number-violating and standard model branching fractions B ( B Ξ ¯ c 0 Λ ¯ c ) / B ( B Ξ c 0 Λ ¯ c ) to be < 2.7 % and on the effective angular frequency of mixing ω in Ξ c 0 Ξ ¯ c 0 oscillations to be < 0.76 ps 1 (equivalent to τ mix > 1.3 ps ). Published by the American Physical Society2024 
    more » « less