skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fracture toughness and fatigue crack growth resistance of precipitate-free and precipitation hardened NiTiHf shape memory alloys
The present work investigates fracture toughness, and actuation and mechanical fatigue crack growth responses of Ni50.3Ti29.7Hf20 HTSMAs across martensitic transformation with two different microstructures, one with H-phase nanoprecipitates and one without. H-phase precipitation is known to stabilize the actuation cycling response of NiTiHf HTSMAs and notably impacts transformation-induced plasticity. The fracture toughness tests performed reveal that precipitate-free NiTiHf has a higher fracture toughness and undergoes significantly more inelastic deformation than the one with the precipitates resulting in toughness enhancement, i.e., stable crack advance during fracture toughness experiments, which is not observed in the precipitated NiTiHf for the crack configuration and loading conditions tested. Furthermore, the precipitate free NiTiHf has higher actuation and mechanical fatigue crack growth resistance than the precipitation-hardened microstructure. This is attributed to plasticity buildup, which exacerbates the manifestation of retained martensite upon repeated transformations. The fatigue crack growth rates obtained from both actuation and mechanical fatigue experiments align to a single Paris Law Curve for the precipitation-hardened NiTiHf. This work aims to determine if unified Paris Law curves can be generated from mechanical and actuation fatigue experiments, irrespective of composition and microstructure, to estimate actuation fatigue crack growth rates, laborious and challenging to measure, from easier to detect mechanical fatigue crack growth rates.  more » « less
Award ID(s):
2004752
PAR ID:
10510161
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Materials Science and Engineering: A
Volume:
900
Issue:
C
ISSN:
0921-5093
Page Range / eLocation ID:
146443
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Shape Memory Alloy (SMA)-actuators are efficient, simple, and robust alternatives to conventional actuators when a small volume and/or large force and stroke are required. The analysis of their failure response is critical for their design in order to achieve optimum functionality and performance. Here, (i) the existing knowledge base on the fatigue and overload fracture response of SMAs under actuation loading is reviewed regarding the failure micromechanisms, empirical relations for actuation fatigue life prediction, experimental measurements of fracture toughness and fatigue crack growth rates, and numerical investigations of toughness properties and (ii) future developments required to expand the acquired knowledge, enhance the current understanding, and ultimately enable commercial applications of SMA-actuators are discussed. 
    more » « less
  2. NiTiHf is a class of promising high-temperature shape memory alloys (SMAs) that find many applications. However, their complex martensitic microstructure and attendant thermomechanical properties are not well understood. In this work, we used solution-treated (precipitate-free) and aged (precipitate-bearing) Ni50.3Ti29.7Hf20 (at.%) SMAs as a model system. We observed that the presence of precipitates refines the martensite plates, reduces the number of martensite variants, and changes the orientation relationship between the martensite plates compared with the solution-treated counterpart. Furthermore, the aged samples exhibited higher transformation temperatures, narrower phase transformation temperature windows, improved thermal stability, and retained or even improved actuation strain. The improved thermomechanical properties observed in the aged samples are attributed in part to the reduction of the number of martensite variants and the change in martensite and twin interface characteristics, both of which are induced by the presence of precipitates. The findings of this study offer new information on the processing-property-microstructure relationship in NiTiHf-based SMAs. These insights can guide future materials design efforts, facilitating the development of advanced SMAs tailored for specific high-temperature applications. 
    more » « less
  3. NiTiHf high temperature shape memory alloys (HTSMAs) are being used in an ever-growing array of applications, specifically in the aerospace and automotive industries. One of the difficulties facing further implementation is ensuring the actuation fatigue lifetime is sufficiently long as to prevent the HTSMA components from being a limiting factor to the mean time between failures of a system. Another potential problem for widespread use is the deterioration of actuation stroke during lifetime, which can be problematic when attempting to have a high-fidelity repeatable design. One way of solving these issues is to optimize the microstructure through careful control of composition, processing, and heat treatments. Current research shows composition of large-scale productions is incredibly difficult to control, and small deviations in composition (~0.1 at.% Ni) can result in changes in transformation temperature by 50?C or more. Four NiTiHf compositions were investigated. The initial goal to simply extend the actuation fatigue lifetime and provide a stable actuation response morphed into determining material factors that influence the actuation response of partially cycled samples. 
    more » « less
  4. A phase-field model for thermomechanically-induced fracture in NiTi at the single crystal level, i.e., fracture under loading paths that may take advantage of either of the functional properties of NiTi–superelasticity or shape memory effect–, is presented, formulated within the kinematically linear regime. The model accounts for reversible phase transformation from austenite to martensite habit plane variants and plastic deformation in the austenite phase. Transformation-induced plastic deformation is viewed as a mechanism for accommodation of the local deformation incompatibility at the austenite–martensite interfaces and is accounted for by introducing an interaction term in the free energy derived based on the Mori–Tanaka and Kröner micromechanical assumptions and the hypothesis of martensite instantaneous growth within austenite. Based on experimental observations suggesting that NiTi fractures in a stress-controlled manner, damage is assumed to be driven by the elastic energy, i.e., phase transformation and plastic deformation are assumed to contribute in crack formation and growth indirectly through stress redistribution. The model is restricted to quasistatic mechanical loading (no latent heat effects), thermal loading sufficiently slow with respect to the time rate of heat transfer by conduction (no thermal gradients), and a temperature range below 𝑀𝑑, which is the temperature above which the austenite phase is stable, i.e., stress-induced martensitic transformation is suppressed. The numerical implementation of the model is based on an efficient scheme of viscous regularization in both phase transformation and plastic deformation, an explicit numerical integration via a tangent modulus method, and a staggered scheme for the coupling of the unknown fields. The model is shown able to capture transformation-induced toughening, i.e., stable crack advance attributed to the shielding effect of inelastic deformation left in the wake of the growing crack under nominal isothermal loading, actuation-induced fracture under a constant bias load, and crystallographic dependence on crack pattern. 
    more » « less
  5. Abstract Unlike micromechanics failure models that have a well-defined crack path, phase-field fracture models are capable of predicting the crack path in arbitrary geometries and dimensions by utilizing a diffuse representation of cracks. However, such models rely on the calibration of a fracture energy (Gc) and a regularization length-scale (lc) parameter, which do not have a strong micromechanical basis. Here, we construct the equivalent crack-tip cohesive zone laws representing a phase-field fracture model, to elucidate the effects of Gc and lc on the fracture resistance and crack growth mechanics under mode I K-field loading. Our results show that the cohesive zone law scales with increasing Gc while maintaining the same functional form. In contrast, increasing lc broadens the process zone and results in a flattened traction-separation profile with a decreased but sustained peak cohesive traction over longer separation distances. While Gc quantitatively captures the fracture initiation toughness, increasing Gc coupled with decreasing lc contributes to a rising fracture resistance curve and a higher steady-state toughness—both these effects cumulate in an evolving cohesive zone law with crack progression. We discuss the relationship between these phase-field parameters and process zone characteristics in the material. 
    more » « less