The present work investigates fracture toughness, and actuation and mechanical fatigue crack growth responses of Ni50.3Ti29.7Hf20 HTSMAs across martensitic transformation with two different microstructures, one with H-phase nanoprecipitates and one without. H-phase precipitation is known to stabilize the actuation cycling response of NiTiHf HTSMAs and notably impacts transformation-induced plasticity. The fracture toughness tests performed reveal that precipitate-free NiTiHf has a higher fracture toughness and undergoes significantly more inelastic deformation than the one with the precipitates resulting in toughness enhancement, i.e., stable crack advance during fracture toughness experiments, which is not observed in the precipitated NiTiHf for the crack configuration and loading conditions tested. Furthermore, the precipitate free NiTiHf has higher actuation and mechanical fatigue crack growth resistance than the precipitation-hardened microstructure. This is attributed to plasticity buildup, which exacerbates the manifestation of retained martensite upon repeated transformations. The fatigue crack growth rates obtained from both actuation and mechanical fatigue experiments align to a single Paris Law Curve for the precipitation-hardened NiTiHf. This work aims to determine if unified Paris Law curves can be generated from mechanical and actuation fatigue experiments, irrespective of composition and microstructure, to estimate actuation fatigue crack growth rates, laborious and challenging to measure, from easier to detect mechanical fatigue crack growth rates.
more »
« less
Property and microstructure of Ni50.3Ti29.7Hf20 high-temperature shape memory alloys with different aging conditions
NiTiHf is a class of promising high-temperature shape memory alloys (SMAs) that find many applications. However, their complex martensitic microstructure and attendant thermomechanical properties are not well understood. In this work, we used solution-treated (precipitate-free) and aged (precipitate-bearing) Ni50.3Ti29.7Hf20 (at.%) SMAs as a model system. We observed that the presence of precipitates refines the martensite plates, reduces the number of martensite variants, and changes the orientation relationship between the martensite plates compared with the solution-treated counterpart. Furthermore, the aged samples exhibited higher transformation temperatures, narrower phase transformation temperature windows, improved thermal stability, and retained or even improved actuation strain. The improved thermomechanical properties observed in the aged samples are attributed in part to the reduction of the number of martensite variants and the change in martensite and twin interface characteristics, both of which are induced by the presence of precipitates. The findings of this study offer new information on the processing-property-microstructure relationship in NiTiHf-based SMAs. These insights can guide future materials design efforts, facilitating the development of advanced SMAs tailored for specific high-temperature applications.
more »
« less
- Award ID(s):
- 2004752
- PAR ID:
- 10503850
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Acta Materialia
- Volume:
- 265
- Issue:
- C
- ISSN:
- 1359-6454
- Page Range / eLocation ID:
- 119642
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ni–Mn–Ga Heusler alloys are multifunctional materials that demonstrate macroscopic strain under an externally applied magnetic field through the motion of martensite twin boundaries within the microstructure. This study sought to comprehensively characterize the microstructural, mechanical, thermal, and magnetic properties near the solidus in binder-jet 3D printed 14M Ni50Mn30Ga20. Neutron diffraction data were analyzed to identify the martensite modulation and observe the grain size evolution in samples sintered at temperatures of 1080 °C and 1090 °C. Large clusters of high neutron-count pixels in samples sintered at 1090 °C were identified, suggesting Bragg diffraction of large grains (near doubling in size) compared to 1080 °C sintered samples. The grain size was confirmed through quantitative stereology of polished surfaces for differently sintered and heat-treated samples. Nanoindentation testing revealed a greater resistance to plasticity and a larger elastic modulus in 1090 °C sintered samples (relative density ~95%) compared to the samples sintered at 1080 °C (relative density ~80%). Martensitic transformation temperatures were lower for samples sintered at 1090 °C than 1080 °C, though a further heat treatment step could be added to tailor the transformation temperature. Microstructurally, twin variants ≤10 μm in width were observed and the presence of magnetic anisotropy was confirmed through magnetic force microscopy. This study indicates that a 10 °C sintering temperature difference can largely affect the microstructure and mechanical properties (including elastic modulus and hardness) while still allowing for the presence of magnetic twin variants in the resulting modulated martensite.more » « less
-
To obtain thorough understandings of precipitation process in heat-treatable Mg-Ca-Zn alloy, we revisited the precipitation process of a Mg-0.3Ca-0.6 Zn (at.%) dilute alloy during isothermal aging at 200 °C using an aberration-corrected scanning transmission electron microscope, atom probe tomography, and first-principles calculations. The monolayer G.P. zones form on the (0002)α plane in the peak-aged condition and transform into tri-atomic layer η'' and η' plates with a thickness of a single unit-cell height. The η' plates, then, form in pairs and stacks with energetically favorable 4–5 atomic layers of pure magnesium between the plates. While such a transformation path is similar to that seen in Mg-RE-Zn alloys (RE: rare-earth elements), the unique structure of coarse η1 plates that precipitate after the η' plates leads to a different precipitate microstructure evolution from the Mg-RE-Zn system. The η1 phase (Mg7Ca2Zn3) is unevenly distributed in the matrix after 100 h of aging and finally evolves to the equilibrium η phase (Mg10Ca3Zn6) phase with a hexagonal structure. First-principles calculations of energetics were performed to further identify the crystal structure and stability of the precipitates, supporting the following new precipitation sequence: S.S.S.S. → G.P. zones → η'' → η' → η' pairs and stacks / η1 → ηmore » « less
-
Abstract High‐power piezoelectric applications are predicted to share approximately one‐third of the lead‐free piezoelectric ceramic market in 2024 with alkaline niobates as the primary competitor. To suppress self‐heating in high‐power devices due to mechanical loss when driven by large electric fields, piezoelectric hardening to restrict domain wall motion is required. In the present work, highly effective piezoelectric hardening via coherent plate‐like precipitates in a model system of the (Li,Na)NbO3(LNN) solid solution delivers a reduction in losses, quantified as an electromechanical quality factor, by a factor of ten. Various thermal aging schemes are demonstrated to control the average size, number density, and location of the precipitates. The established properties are correlated with a detailed determination of short‐ and long‐range atomic structure by X‐ray diffraction and pair distribution function analysis, respectively, as well as microstructure determined by transmission electron microscopy. The impact of microstructure with precipitates on both small‐ and large‐field properties is also established. These results pave the way to implement precipitate hardening in piezoelectric materials, analogous to precipitate hardening in metals, broadening their use cases in applications.more » « less
-
The work clarifies several key questions in shape memory research that have eluded previous studies. The f indings show that dislocation slip emanates at austenite-martensite interfaces during unloading and aligns with the internal twin boundary interface of martensite. It was observed that the type II internal twins of the martensite become parallel dislocations in the austenite. During reloading, these dislocations act as nucleation sites for the martensitic twins, reducing the nucleation barrier and the transformation stress. The precipitates facilitate martensite nucleation but also act as an obstacle to martensite front motion, restrict detwinning, and pin the interfacial dislocations during unloading, thereby contributing to residual strains and martensite stabilization. Martensite nucleation is not suppressed by the size of the thin film, which is of the order of 85 to 105 nanometers thick, and repeated transformation occurred cycle after cycle. Single crystals deformed in the <101> LD exhibited the best recoverability of up to 5.5 % and tensile stresses of up to 1.4 GPa. It was demonstrated for the first time that, when favorably oriented, Ni 4 Ti 3 precipitates undergo a reversible phase transformation to R-phase and can accommodate up to 4 % reversible strains.more » « less
An official website of the United States government

