skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Accurately modeling biased random walks on weighted networks using node2vec+
Abstract MotivationAccurately representing biological networks in a low-dimensional space, also known as network embedding, is a critical step in network-based machine learning and is carried out widely using node2vec, an unsupervised method based on biased random walks. However, while many networks, including functional gene interaction networks, are dense, weighted graphs, node2vec is fundamentally limited in its ability to use edge weights during the biased random walk generation process, thus under-using all the information in the network. ResultsHere, we present node2vec+, a natural extension of node2vec that accounts for edge weights when calculating walk biases and reduces to node2vec in the cases of unweighted graphs or unbiased walks. Using two synthetic datasets, we empirically show that node2vec+ is more robust to additive noise than node2vec in weighted graphs. Then, using genome-scale functional gene networks to solve a wide range of gene function and disease prediction tasks, we demonstrate the superior performance of node2vec+ over node2vec in the case of weighted graphs. Notably, due to the limited amount of training data in the gene classification tasks, graph neural networks such as GCN and GraphSAGE are outperformed by both node2vec and node2vec+. Availability and implementationThe data and code are available on GitHub at https://github.com/krishnanlab/node2vecplus_benchmarks. All additional data underlying this article are available on Zenodo at https://doi.org/10.5281/zenodo.7007164. Supplementary informationSupplementary data are available at Bioinformatics online.  more » « less
Award ID(s):
1845856
PAR ID:
10510163
Author(s) / Creator(s):
; ;
Editor(s):
Martelli, Pier Luigi
Publisher / Repository:
Bioinformatics
Date Published:
Journal Name:
Bioinformatics
Volume:
39
Issue:
1
ISSN:
1367-4811
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cowen, Lenore (Ed.)
    Abstract MotivationGene network reconstruction from gene expression profiles is a compute- and data-intensive problem. Numerous methods based on diverse approaches including mutual information, random forests, Bayesian networks, correlation measures, as well as their transforms and filters such as data processing inequality, have been proposed. However, an effective gene network reconstruction method that performs well in all three aspects of computational efficiency, data size scalability, and output quality remains elusive. Simple techniques such as Pearson correlation are fast to compute but ignore indirect interactions, while more robust methods such as Bayesian networks are prohibitively time consuming to apply to tens of thousands of genes. ResultsWe developed maximum capacity path (MCP) score, a novel maximum-capacity-path-based metric to quantify the relative strengths of direct and indirect gene–gene interactions. We further present MCPNet, an efficient, parallelized gene network reconstruction software based on MCP score, to reverse engineer networks in unsupervised and ensemble manners. Using synthetic and real Saccharomyces cervisiae datasets as well as real Arabidopsis thaliana datasets, we demonstrate that MCPNet produces better quality networks as measured by AUPRC, is significantly faster than all other gene network reconstruction software, and also scales well to tens of thousands of genes and hundreds of CPU cores. Thus, MCPNet represents a new gene network reconstruction tool that simultaneously achieves quality, performance, and scalability requirements. Availability and implementationSource code freely available for download at https://doi.org/10.5281/zenodo.6499747 and https://github.com/AluruLab/MCPNet, implemented in C++ and supported on Linux. 
    more » « less
  2. Cherifi, H.; Mantegna, R.N.; Rocha, L.M.; Cherifi, C.; Micciche, S. (Ed.)
    We investigate the statistical learning of nodal attribute distributions in homophily networks using random walks. Attributes can be discrete or continuous. A generalization of various existing canonical models, based on preferential attachment is studied, where new nodes form connections dependent on both their attribute values and popularity as measured by degree. We consider several canonical attribute agnostic sampling schemes such as Metropolis-Hasting random walk, versions of node2vec (Grover and Leskovec 2016) that incorporate both classical random walk and non-backtracking propensities and propose new variants which use attribute information in addition to topological information to explore the network. The performance of such algorithms is studied on both synthetic networks and real world systems, and its dependence on the degree of homophily, or absence thereof, is assessed. 
    more » « less
  3. Pattern counting in graphs is a fundamental primitive for many network analysis tasks, and there are several methods for scaling subgraph counting to large graphs. Many real-world networks have a notion of strength of connection between nodes, which is often modeled by a weighted graph, but existing scalable algorithms for pattern mining are designed for unweighted graphs. Here, we develop deterministic and random sampling algorithms that enable the fast discovery of the 3-cliques (triangles) of largest weight, as measured by the generalized mean of the triangle’s edge weights. For example, one of our proposed algorithms can find the top-1000 weighted triangles of a weighted graph with billions of edges in thirty seconds on a commodity server, which is orders of magnitude faster than existing “fast” enumeration schemes. Our methods open the door towards scalable pattern mining in weighted graphs. 
    more » « less
  4. Abstract We investigate the statistical learning of nodal attribute functionals in homophily networks using random walks. Attributes can be discrete or continuous. A generalization of various existing canonical models, based on preferential attachment is studied (model class $$\mathscr {P}$$ P ), where new nodes form connections dependent on both their attribute values and popularity as measured by degree. An associated model class $$\mathscr {U}$$ U is described, which is amenable to theoretical analysis and gives access to asymptotics of a host of functionals of interest. Settings where asymptotics for model class $$\mathscr {U}$$ U transfer over to model class $$\mathscr {P}$$ P through the phenomenon of resolvability are analyzed. For the statistical learning, we consider several canonical attribute agnostic sampling schemes such as Metropolis-Hasting random walk, versions of node2vec (Grover and Leskovec, 2016) that incorporate both classical random walk and non-backtracking propensities and propose new variants which use attribute information in addition to topological information to explore the network. Estimators for learning the attribute distribution, degree distribution for an attribute type and homophily measures are proposed. The performance of such statistical learning framework is studied on both synthetic networks (model class $$\mathscr {P}$$ P ) and real world systems, and its dependence on the network topology, degree of homophily or absence thereof, (un)balanced attributes, is assessed. 
    more » « less
  5. Martelli, Pier Luigi (Ed.)
    Abstract Motivation Reconstruction of genome-scale networks from gene expression data is an actively studied problem. A wide range of methods that differ between the types of interactions they uncover with varying trade-offs between sensitivity and specificity have been proposed. To leverage benefits of multiple such methods, ensemble network methods that combine predictions from resulting networks have been developed, promising results better than or as good as the individual networks. Perhaps owing to the difficulty in obtaining accurate training examples, these ensemble methods hitherto are unsupervised. Results In this article, we introduce EnGRaiN, the first supervised ensemble learning method to construct gene networks. The supervision for training is provided by small training datasets of true edge connections (positives) and edges known to be absent (negatives) among gene pairs. We demonstrate the effectiveness of EnGRaiN using simulated datasets as well as a curated collection of Arabidopsis thaliana datasets we created from microarray datasets available from public repositories. EnGRaiN shows better results not only in terms of receiver operating characteristic and PR characteristics for both real and simulated datasets compared with unsupervised methods for ensemble network construction, but also generates networks that can be mined for elucidating complex biological interactions. Availability and implementation EnGRaiN software and the datasets used in the study are publicly available at the github repository: https://github.com/AluruLab/EnGRaiN. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less