skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bridging High-density Electron Beam Coronal Transport and Deep Chromospheric Heating in Stellar Flares
Abstract The optical and near-ultraviolet (NUV) continuum radiation in M-dwarf flares is thought to be the impulsive response of the lower stellar atmosphere to magnetic energy release and electron acceleration at coronal altitudes. This radiation is sometimes interpreted as evidence of a thermal photospheric spectrum withT≈ 104K. However, calculations show that standard solar flare coronal electron beams lose their energy in a thick target of gas in the upper and middle chromosphere (log10column mass/[g cm−2] ≲ −3). At larger beam injection fluxes, electric fields and instabilities are expected to further inhibit propagation to low altitudes. We show that recent numerical solutions of the time-dependent equations governing the power-law electrons and background coronal plasma (Langmuir and ion-acoustic) waves from Kontar et al. produce order-of-magnitude larger heating rates than those that occur in the deep chromosphere through standard solar flare electron beam power-law distributions. We demonstrate that the redistribution of beam energy aboveE≳ 100 keV in this theory results in a local heating maximum that is similar to a radiative-hydrodynamic model with a large, low-energy cutoff and a hard power-law index. We use this semiempirical forward-modeling approach to produce opaque NUV and optical continua at gas temperaturesT≳ 12,000 K over the deep chromosphere with log10column mass/[g cm−2] of −1.2 to −2.3. These models explain the color temperatures and Balmer jump strengths in high-cadence M-dwarf flare observations, and they clarify the relation among atmospheric, radiation, and optical color temperatures in stellar flares.  more » « less
Award ID(s):
1916511
PAR ID:
10510250
Author(s) / Creator(s):
Publisher / Repository:
Astrophysical Journal Letters
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
943
Issue:
2
ISSN:
2041-8205
Page Range / eLocation ID:
L23
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract M dwarf flares observed by the Transiting Exoplanet Survey Satellite (TESS) sometimes exhibit apeak-bumplight-curve morphology, characterized by a secondary, gradual peak well after the main, impulsive peak. A similarlate phaseis frequently detected in solar flares observed in the extreme ultraviolet from longer hot coronal loops distinct from the impulsive flare structures. White-light emission has also been observed in off-limb solar flare loops. Here, we perform a suite of one-dimensional hydrodynamic loop simulations for M dwarf flares inspired by these solar examples. Our results suggest that coronal plasma condensation following impulsive flare heating can yield high electron number density in the loop, allowing it to contribute significantly to the optical light curves via free-bound and free–free emission mechanisms. Our simulation results qualitatively agree with TESS observations: the longer evolutionary timescale of coronal loops produces a distinct, secondary emission peak; its intensity increases with the injected flare energy. We argue that coronal plasma condensation is a possible mechanism for the TESS late-phase flares. 
    more » « less
  2. Abstract Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counterintuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfvén waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold,α= 2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: preflare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine thatα= 1.63 ± 0.03. This is below the critical threshold, suggesting that Alfvén waves are an important driver of coronal heating. 
    more » « less
  3. Coronal mass ejections (CMEs) are often associated with X-ray (SXR) flares powered by magnetic reconnection in the low corona, while the CME shocks in the upper corona and interplanetary (IP) space accelerate electrons often producing the type II radio bursts. The CME and the reconnection event are part of the same energy release process as highlighted by the correlation between reconnection flux (ϕrec) that quantifies the strength of the released magnetic free energy during the SXR flare, and the CME kinetic energy that drives the IP shocks leading to type II bursts. Unlike the Sun, these physical parameters cannot be directly inferred in stellar observations. Hence, scaling laws between unresolved sun-as-a-star observables, namely SXR luminosity (LX) and type II luminosity (LR), and the physical properties of the associated dynamical events are crucial. Such scaling laws also provide insights into the interconnections between the particle acceleration processes across low-corona to IP space during solar-stellar “flare-CME-type II” events. Using long-term solar data in the SXR to radio waveband, we derived a scaling law between two novel power metrics for the flare and CME-associated processes. The metrics of “flare power” (Pflare = √(LXϕrec)) and “CME power” (PCME = √(LRVCME2)), whereVCMEis the CME speed, scale asPflare ∝ PCME0.76 ± 0.04. In addition,LXandϕrecshow power-law trends withPCMEwith indices of 1.12 ± 0.05 and 0.61 ± 0.05, respectively. These power laws help infer the spatially resolved physical parameters,VCMEandϕrec, from disk-averaged observables,LXandLRduring solar-stellar flare-CME-type II events. 
    more » « less
  4. Abstract Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager (HMI) observations reveal a class of solar flares with substantial energy and momentum impacts in the photosphere, concurrent with white-light emission and helioseismic responses, known as sunquakes. Previous radiative hydrodynamic modeling has demonstrated the challenges of explaining sunquakes in the framework of the standard flare model of “electron beam” heating. One of the possibilities to explain the sunquakes and other signatures of the photospheric impact is to consider additional heating mechanisms involved in solar flares, for example via flare-accelerated protons. In this work, we analyze a set of single-loop Fokker–Planck and radiative hydrodynamics RADYN+FP simulations where the atmosphere is heated by nonthermal power-law-distributed proton beams which can penetrate deeper than the electron beams into the low atmospheric layers. Using the output of the RADYN models, we calculate synthetic Fei6173 Å line Stokes profiles and from those the line-of-sight observables of the SDO/HMI instrument, as well as the 3D helioseismic response, and compare them with the corresponding observational characteristics. These initial results show that the models with proton beam heating can produce the enhancement of the HMI continuum observable and explain qualitatively the generation of sunquakes. The continuum observable enhancement is evident in all models but is more prominent in ones withEc≥ 500 keV. In contrast, the models withEc≤ 100 keV provide a stronger sunquake-like helioseismic impact according to the 3D acoustic modeling, suggesting that low-energy (deka- and hecto-keV) protons have an important role in the generation of sunquakes. 
    more » « less
  5. Abstract Redshifted components of chromospheric emission lines in the hard X-ray impulsive phase of solar flares have recently been studied through their 30 s evolution with the high resolution of the Interface Region Imaging Spectrograph. Radiative-hydrodynamic flare models show that these redshifts are generally reproduced by electron-beam-generated chromospheric condensations. The models produce large ambient electron densities, and the pressure broadening of the hydrogen Balmer series should be readily detected in observations. To accurately interpret the upcoming spectral data of flares with the DKIST, we incorporate nonideal, nonadiabatic line-broadening profiles of hydrogen into the RADYN code. These improvements allow time-dependent predictions for the extreme Balmer line wing enhancements in solar flares. We study two chromospheric condensation models, which cover a range of electron-beam fluxes (1 − 5 × 10 11 erg s −1 cm −2 ) and ambient electron densities (1 − 60 × 10 13 cm −3 ) in the flare chromosphere. Both models produce broadening and redshift variations within 10 s of the onset of beam heating. In the chromospheric condensations, there is enhanced spectral broadening due to large optical depths at H α , H β , and H γ , while the much lower optical depth of the Balmer series H12−H16 provides a translucent window into the smaller electron densities in the beam-heated layers below the condensation. The wavelength ranges of typical DKIST/ViSP spectra of solar flares will be sufficient to test the predictions of extreme hydrogen wing broadening and accurately constrain large densities in chromospheric condensations. 
    more » « less