skip to main content

Title: The role of terrain-mediated hydroclimate in vegetation recovery after wildfire
Throughout communities and ecosystems both within and downstream of mountain forests, there is an increasing risk of wildfire. After a wildfire, stakeholder management will vary depending on the rate and spatial heterogeneity of forest re-establishment. However, forest re-establishment and recovery after a wildfire is closely linked to interactions between the temporal evolution of plant-available water (PAW) and spatial patterns in available energy. Therefore, we propose a conceptual model that describes spatial heterogeneity in long-term watershed recovery rate as a function of topographically-mediated interactions between available energy and the movement of water in the subsurface (i.e. subsurface hydrologic redistribution). As vegetation becomes re-established across a burned landscape in response to topographic and subsurface controls on water and energy, canopies shade the ground surface and reduce wind speed creating positive feedbacks that increase PAW. Furthermore, slope aspect differentially impacts the spatial patterns in regrowth and re-establishment. South aspect slopes receive high solar radiation, and consequently are warmer and drier, with lower standing biomass and greater drought stress and mortality compared to north aspect slopes. To date, most assessments of these impacts have taken a bulk approach, or an implicitly one-dimensional conceptual approach that does not include spatial heterogeneity in hydroclimate influenced by topography and vegetation. The presented conceptual model sets a starting point to further our understanding of the spatio-temporal evolution of PAW storage, energy availability, and vegetation re-establishment and survival in forested catchments after a wildfire. The model also provides a template for collaboration with diverse stakeholders to aid the co-production of next generation management tools to mitigate the negative impacts of future wildfires.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Publisher / Repository:
Date Published:
Journal Name:
Environmental Research Letters
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Anthropogenic climate change has increased the frequency of drought, wildfire, and invasions of non‐native species. Although high‐severity fires linked to drought can inhibit recovery of native vegetation in forested ecosystems, it remains unclear how drought impacts the recovery of other plant communities following wildfire. We leveraged an existing rainfall manipulation experiment to test the hypothesis that reduced precipitation, fuel load, and fire severity convert plant community composition from native shrubs to invasive grasses in a Southern California coastal sage scrub system. We measured community composition before and after the 2020 Silverado wildfire in plots with three rainfall treatments. Drought reduced fuel load and vegetation cover, which reduced fire severity. Native shrubs had greater prefire cover in added water plots compared to reduced water plots. Native cover was lower and invasive cover was higher in postfire reduced water plots compared to postfire added and ambient water plots. Our results demonstrate the importance of fuel load on fire severity and plant community composition on an ecosystem scale. Management should focus on reducing fire frequency and removing invasive species to maintain the resilience of coastal sage scrub communities facing drought. In these communities, controlled burns are not recommended as they promote invasive plants.

    more » « less
  2. Abstract

    Wildfire records demonstrate worsening patterns coupled with the spread to higher altitudes in several regions, raising the risk of post‐wildfire ground failures. This study investigates the post‐wildfire stability of unsaturated hillslopes against rainfall‐triggered shallow landslides. We developed a new physics‐based analytical framework incorporating wildfire‐induced changes in soil properties and near‐surface processes affecting the hillslope stability. A coupled hydromechanical infiltration model is integrated into an infinite slope stability analysis to simulate temporal changes in the depth profiles of soil water content, pressure head, and the resulting factor of safety (F.S.) of a vegetated slope. We consider the antecedent conditions of soil and vegetation cover, including the recovery phase after the fire, wildfire‐induced alterations in transpiration, and time‐varying infiltration rates. The model is verified against numerical simulations and employed in parametric studies evaluating the effects of wildfire severity and rainfall intensity‐duration. For the cases examined, it was shown that wildfire could reduce the F.S. of slopes by 25%. As a case study, the model successfully captured shallow rainfall‐triggered landslides that occurred in the Las Lomas watershed in California, USA, in 2019, 3 years after the Fish Fire burned the area. The proposed model uses measurable hillslope and wildfire characteristics and can be employed to evaluate the risk of shallow landslides in wildfire‐prone areas.

    more » « less
  3. Abstract

    Quantifying evapotranspiration (ET) is critical to accurately predict vegetation health, groundwater recharge, and streamflow generation. Hillslope aspect, the direction a hillslope faces, results in variable incoming solar radiation and subsequent vegetation water use that drive ET. Previous work in watersheds with a single dominant vegetation type (e.g., trees) have shown that equator‐facing slopes (EFS) have higher ET compared to pole‐facing slopes (PFS) due to higher evaporative demand. However, it remains unclear how differences in vegetation type (i.e., grasses and trees) influence ET and water partitioning between hillslopes with opposing aspects. Here, we quantified ET and root‐zone water storage deficits between a PFS and EFS with contrasting vegetation types within central coastal California. Our results suggest that the cooler PFS with oak trees has higher ET than the warmer EFS with grasses, which is counter to previous work in landscapes with a singule dominant vegetation type. Our root‐zone water storage deficit calculations indicate that the PFS has a higher subsurface storage deficit and a larger seasonal dry down than the EFS. This aspect difference in subsurface water storage deficits may influence the subsequent replenishment of dynamic water storage, groundwater recharge and streamflow generation. In addition, larger subsurface water deficits on PFS may reduce their ability to serve as hydrologic refugia for oaks during multi‐year droughts. This research provides a novel integration of field‐based and remotely‐sensed estimates of ET required to properly quantify hillslope‐scale water balances. These findings emphasize the importance of resolving hillslope‐scale vegetation structure within Earth system models, especially in landscapes with diverse vegetation types.

    more » « less
  4. Abstract

    Sensitivity of forest mortality to drought in carbon‐dense tropical forests remains fraught with uncertainty, while extreme droughts are predicted to be more frequent and intense. Here, the potential of temporal autocorrelation of high‐frequency variability in Landsat Enhanced Vegetation Index (EVI), an indicator of ecosystem resilience, to predict spatial and temporal variations of forest biomass mortality is evaluated against in situ census observations for 64 site‐year combinations in Costa Rican tropical dry forests during the 2015 ENSO drought. Temporal autocorrelation, within the optimal moving window of 24 months, demonstrated robust predictive power for in situ mortality (leave‐one‐out cross‐validationR2 = 0.54), which allows for estimates of annual biomass mortality patterns at 30 m resolution. Subsequent spatial analysis showed substantial fine‐scale heterogeneity of forest mortality patterns, largely driven by drought intensity and ecosystem properties related to plant water use such as forest deciduousness and topography. Highly deciduous forest patches demonstrated much lower mortality sensitivity to drought stress than less deciduous forest patches after elevation was controlled. Our results highlight the potential of high‐resolution remote sensing to “fingerprint” forest mortality and the significant role of ecosystem heterogeneity in forest biomass resistance to drought.

    more » « less
  5. Abstract Aim

    Climate warming is increasing fire activity in many of Earth’s forested ecosystems. Because fire is a catalyst for change, investigation of post‐fire vegetation response is critical to understanding the potential for future conversions from forest to non‐forest vegetation types. We characterized the influences of climate and terrain on post‐fire tree regeneration and assessed how these biophysical factors might shape future vulnerability to wildfire‐driven forest conversion.


    Montane forests, Rocky Mountains, USA.

    Time period


    Taxa studied

    Pinus ponderosa;Pseudotsuga menziesii.


    We developed a database of dendrochronological samples (n = 717) and plots (n = 1,301) in post‐fire environments spanning a range of topoclimatic settings. We then used statistical models to predict annual post‐fire seedling establishment suitability and total post‐fire seedling abundance from a suite of biophysical correlates. Finally, we reconstructed recent trends in post‐fire recovery and projected future dynamics using three general circulation models (GCMs) under moderate and extreme CO2emission scenarios.


    Though growing season (April–September) precipitation during the recent period (1981–2015) was positively associated with suitability for post‐fire tree seedling establishment, future (2021–2099) trends in precipitation were widely variable among GCMs, leading to mixed projections of future establishment suitability. In contrast, climatic water deficit (CWD), which is indicative of warm, dry conditions, was negatively associated with post‐fire seedling abundance during the recent period and was projected to increase throughout the southern Rocky Mountains in the future. Our findings suggest that future increases in CWD and an increased frequency of extreme drought years will substantially reduce post‐fire seedling densities.

    Main conclusions

    This study highlights the key roles of warming and drying in declining forest resilience to wildfire. Moisture stress, driven by macroclimate and topographic setting, will interact with wildfire activity to shape future vegetation patterns throughout the southern Rocky Mountains, USA.

    more » « less