Abstract There is growing evidence that prey perceive the risk of predation and alter their behavior in response, resulting in changes in spatial distribution and potential fitness consequences. Previous approaches to mapping predation risk across a landscape quantify predator space use to estimate potential predator‐prey encounters, yet this approach does not account for successful predator attack resulting in prey mortality. An exception is a prey kill site that reflects an encounter resulting in mortality, but obtaining information on kill sites is expensive and requires time to accumulate adequate sample sizes.We illustrate an alternative approach using predator scat locations and their contents to quantify spatial predation risk for elk(Cervus canadensis) from multiple predators in the Rocky Mountains of Alberta, Canada. We surveyed over 1300 km to detect scats of bears (Ursus arctos/U.americanus), cougars (Puma concolor), coyotes (Canis latrans), and wolves (C.lupus). To derive spatial predation risk, we combined predictions of scat‐based resource selection functions (RSFs) weighted by predator abundance with predictions that a predator‐specific scat in a location contained elk. We evaluated the scat‐based predictions of predation risk by correlating them to predictions based on elk kill sites. We also compared scat‐based predation risk on summer ranges of elk following three migratory tactics for consistency with telemetry‐based metrics of predation risk and cause‐specific mortality of elk.We found a strong correlation between the scat‐based approach presented here and predation risk predicted by kill sites and (r = .98,p < .001). Elk migrating east of the Ya Ha Tinda winter range were exposed to the highest predation risk from cougars, resident elk summering on the Ya Ha Tinda winter range were exposed to the highest predation risk from wolves and coyotes, and elk migrating west to summer in Banff National Park were exposed to highest risk of encountering bears, but it was less likely to find elk in bear scats than in other areas. These patterns were consistent with previous estimates of spatial risk based on telemetry of collared predators and recent cause‐specific mortality patterns in elk.A scat‐based approach can provide a cost‐efficient alternative to kill sites of quantifying broad‐scale, spatial patterns in risk of predation for prey particularly in multiple predator species systems.
more »
« less
The structure of the thermal landscape determined behavioural and physiological responses to simulated predation risk
Although predators can deter an animal from regulating its body temperature by basking or shuttling, this response to predation should depend on the spatial distribution of thermal resources. By simulating predation risk, we showed that movement, thermoregulation and corticosterone of male lizards Sceloporus jarrovi depended on the spatial distribution of shade. Simulated risk caused lizards to move less, thermoregulate worse and circulate more corticosterone than they did without risk. However, a patchier distribution of shade enabled lizards to move more, thermoregulate better and circulate less corticosterone when exposed to a simulated predator. In the absence of simulated risk, lizards in patchier environments moved less, thermoregulated better and circulated less corticosterone, indicating the distribution of shade also affected the energetic cost of thermoregulation. This study provides the first test of a spatial theory of thermoregulation under the perceived risk of predation.
more »
« less
- Award ID(s):
- 1655499
- PAR ID:
- 10510334
- Publisher / Repository:
- British Ecological Society
- Date Published:
- Journal Name:
- Functional Ecology
- Volume:
- 37
- Issue:
- 11
- ISSN:
- 0269-8463
- Page Range / eLocation ID:
- 2826 to 2839
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Plant distributions can be limited by habitat-biased herbivory, but the proximate causes of such biases are rarely known. Distinguishing plant-centric from herbivore-centric mechanisms driving differential herbivory between habitats is difficult without experimental manipulation of both plants and herbivores. Here, we tested alternative hypotheses driving habitat-biased herbivory in bittercress (Cardamine cordifolia), which is more abundant under the shade of shrubs and trees (shade) than in nearby meadows (sun) where herbivory is intense from the specialist fly Scaptomyza nigrita. This system has served as a textbook example of habitat-biased herbivory driving a plant's distribution across an ecotone, but the proximate mechanisms underlying differential herbivory are still unclear. First, we found that higher S. nigrita herbivory in sun habitats contrasts sharply with their preference to attack plants from shade habitats in laboratory-choice experiments. Second, S. nigrita strongly preferred leaves in simulated sun over simulated shade habitats, regardless of plant source habitat. Thus, herbivore preference for brighter, warmer habitats overrides their preference for more palatable shade plants. This promotes the sun-biased herbivore pressure that drives the distribution of bittercress into shade habitats.more » « less
-
Fusi, Marco (Ed.)Behavioral thermoregulation is an important defense against the negative impacts of climate change for ectotherms. In this study we examined the use of burrows by a common intertidal crab, Minuca pugnax , to control body temperature. To understand how body temperatures respond to changes in the surface temperature and explore how efficiently crabs exploit the cooling potential of burrows to thermoregulate, we measured body, surface, and burrow temperatures during low tide on Sapelo Island, GA in March, May, August, and September of 2019. We found that an increase in 1°C in the surface temperature led to a 0.70-0.71°C increase in body temperature for females and an increase in 0.75-0.77°C in body temperature for males. Body temperatures of small females were 0.3°C warmer than large females for the same surface temperature. Female crabs used burrows more efficiently for thermoregulation compared to the males. Specifically, an increase of 1°C in the cooling capacity (the difference between the burrow temperature and the surface temperature) led to an increase of 0.42-0.50°C for females and 0.34-0.35°C for males in the thermoregulation capacity (the difference between body temperature and surface temperature). The body temperature that crabs began to use burrows to thermoregulate was estimated to be around 24°C, which is far below the critical body temperatures that could lead to death. Many crabs experience body temperatures of 24°C early in the reproductive season, several months before the hottest days of the year. Because the use of burrows involves fitness trade-offs, these results suggest that warming temperatures could begin to impact crabs far earlier in the year than expected.more » « less
-
ABSTRACT Environmental challenges early in development can result in complex phenotypic trade-offs and long-term effects on individual physiology, performance and behavior, with implications for disease and predation risk. We examined the effects of simulated pond drying and elevated water temperatures on development, growth, thermal physiology and behavior in a North American amphibian, Rana sphenocephala. Tadpoles were raised in outdoor mesocosms under warming and drying regimes based on projected climatic conditions in 2070. We predicted that amphibians experiencing the rapid pond drying and elevated pond temperatures associated with climate change would accelerate development, be smaller at metamorphosis and demonstrate long-term differences in physiology and exploratory behavior post-metamorphosis. Although both drying and warming accelerated development and reduced survival to metamorphosis, only drying resulted in smaller animals at metamorphosis. Around 1 month post-metamorphosis, animals from the control treatment jumped relatively farther at high temperatures in jumping trials. In addition, across all treatments, frogs with shorter larval periods had lower critical thermal minima and maxima. We also found that developing under warming and drying resulted in a less exploratory behavioral phenotype, and that drying resulted in higher selected temperatures in a thermal gradient. Furthermore, behavior predicted thermal preference, with less exploratory animals selecting higher temperatures. Our results underscore the multi-faceted effects of early developmental environments on behavioral and physiological phenotypes later in life. Thermal preference can influence disease risk through behavioral thermoregulation, and exploratory behavior may increase risk of predation or pathogen encounter. Thus, climatic stressors during development may mediate amphibian exposure and susceptibility to predators and pathogens into later life stages.more » « less
-
Summary To what degree plant ecosystems thermoregulate their canopy temperature (Tc) is critical to assess ecosystems' metabolisms and resilience with climate change, but remains controversial, with opinions from no to moderate thermoregulation capability.With global datasets ofTc, air temperature (Ta), and other environmental and biotic variables from FLUXNET and satellites, we tested the ‘limited homeothermy’ hypothesis (indicated byTc&Taregression slope < 1 orTc < Taaround midday) across global extratropics, including temporal and spatial dimensions.Across daily to weekly and monthly timescales, over 80% of sites/ecosystems have slopes ≥1 orTc > Taaround midday, rejecting the above hypothesis. For those sites unsupporting the hypothesis, theirTc–Tadifference (ΔT) exhibits considerable seasonality that shows negative, partial correlations with leaf area index, implying a certain degree of thermoregulation capability. Spatially, site‐mean ΔTexhibits larger variations than the slope indicator, suggesting ΔTis a more sensitive indicator for detecting thermoregulatory differences across biomes. Furthermore, this large spatial‐wide ΔTvariation (0–6°C) is primarily explained by environmental variables (38%) and secondarily by biotic factors (15%).These results demonstrate diverse thermoregulation patterns across global extratropics, with most ecosystems negating the ‘limited homeothermy’ hypothesis, but their thermoregulation still occurs, implying that slope < 1 orTc < Taare not necessary conditions for plant thermoregulation.more » « less
An official website of the United States government

