Abstract Oxides that exhibit an insulator–metal transition can be used to fabricate energy‐efficient relaxation oscillators for use in hardware‐based neural networks but there are very few oxides with transition temperatures above room temperature. Here the structural, electrical, and thermal properties of V3O5thin films and their application as the functional oxide in metal/oxide/metal relaxation oscillators are reported. The V3O5devices show electroforming‐free volatile threshold switching and negative differential resistance (NDR) with stable (<3% variation) cycle‐to‐cycle operation. The physical mechanisms underpinning these characteristics are investigated using a combination of electrical measurements, in situ thermal imaging, and device modeling. This shows that conduction is confined to a narrow filamentary path due to self‐confinement of the current distribution and that the NDR response is initiated at temperatures well below the insulator–metal transition temperature where it is dominated by the temperature‐dependent conductivity of the insulating phase. Finally, the dynamics of individual and coupled V3O5‐based relaxation oscillators is reported, showing that capacitively coupled devices exhibit rich non‐linear dynamics, including frequency and phase synchronization. These results establish V3O5as a new functional material for volatile threshold switching and advance the development of robust solid‐state neurons for neuromorphic computing.
more »
« less
This content will become publicly available on April 12, 2025
Optically Tunable Electrical Oscillations in Oxide‐Based Memristors for Neuromorphic Computing
Abstract The application of hardware‐based neural networks can be enhanced by integrating sensory neurons and synapses that enable direct input from external stimuli. This work reports direct optical control of an oscillatory neuron based on volatile threshold switching in V3O5. The devices exhibit electroforming‐free operation with switching parameters that can be tuned by optical illumination. Using temperature‐dependent electrical measurements, conductive atomic force microscopy (C‐AFM), in situ thermal imaging, and lumped element modelling, it is shown that the changes in switching parameters, including threshold and hold voltages, arise from overall conductivity increase of the oxide film due to the contribution of both photoconductive and bolometric characteristics of V3O5, which eventually affects the oscillation dynamics. Furthermore, V3O5is identified as a new bolometric material with a temperature coefficient of resistance (TCR) as high as −4.6% K−1at 423 K. The utility of these devices is illustrated by demonstrating in‐sensor reservoir computing with reduced computational effort and an optical encoding layer for spiking neural network (SNN), respectively, using a simulated array of devices.
more »
« less
- Award ID(s):
- 2033328
- PAR ID:
- 10510360
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Advanced Materials
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Fluorescent proteins (FPs) have recently emerged as a serious contender for realizing ultralow threshold room temperature exciton–polariton condensation and lasing. This contribution investigates the thermalization of FP microcavity exciton–polaritons upon optical pumping under ambient conditions. Polariton cooling is realized using a new FP molecule, called mScarlet, coupled strongly to the optical modes in a Fabry–Pérot cavity. Interestingly, at the threshold excitation energy (fluence) of ≈9 nJ per pulse (15.6 mJ cm−2), an effective temperature is observed,Teff ≈ 350 ± 35 K close to the lattice temperature indicative of strongly thermalized exciton–polaritons at equilibrium. This efficient thermalization results from the interplay of radiative pumping facilitated by the energetics of the lower polariton branch and the cavityQ‐factor. Direct evidence for dramatic switching from an equilibrium state into a metastable state is observed for the organic cavity polariton device at room temperature via deviation from the Maxwell–Boltzmann statistics atk‖ = 0 above the threshold. Thermalized polariton gases in organic systems at equilibrium hold substantial promise for designing room temperature polaritonic circuits, switches, and lattices for analog simulation.more » « less
-
Abstract Discovery of new materials with enhanced optical properties in the visible and UV‐C range can impact applications in lasers, nonlinear optics, and quantum optics. Here, the optical floating zone growth of a family of rare earth borates,RBa3(B3O6)3(R= Nd, Sm, Tb, Dy, and Er), with promising linear and nonlinear optical (NLO) properties is reported. Although previously identified to be centrosymmetric, the X‐ray analysis combined with optical second harmonic generation (SHG) assigns the noncentrosymmetricPspace group to these crystals. Characterization of linear optical properties reveals a direct bandgap of ≈5.61–5.72 eV and strong photoluminescence in both the visible and mid‐IR regions. Anisotropic linear and nonlinear optical characterization reveals both Type‐I and Type‐II SHG phase matchability, with the highest effective phase‐matched SHG coefficient of 1.2 pm V−1at 800‐nm fundamental wavelength (for DyBa3(B3O6)3), comparable to β‐BaB2O4(phase‐matchedd22≈ 1.9 pm V−1). Laser‐induced surface damage threshold for these environmentally stable crystals is 650–900 GW cm−2, which is four to five times higher than that of β‐BaB2O4, thus providing an opportunity to pump with significantly higher power to generate about six to seven times stronger SHG light. Since the SHG arises from disorder on the Ba‐site, significantly larger SHG coefficients may be realized by “poling” the crystals to align the Ba displacements. These properties motivate further development of this crystal family for laser and wide bandgap NLO applications.more » « less
-
The overarching goal herein is to identify the factors dominating the performance of a‐IGZO‐based memristors. Despite the highest on/off ratio, greater than 104with a preferred minimal set/reset bias achieved from a‐IGZO‐based memristors, it is observed that the switching performance and stability/reliability of the devices is significantly dominated by theVO··density and metallization material, depending on their reactivity with IGZO. As the first governing factor, ensuring optimalVO··concentration in the switching layer IGZO (VO··/OOxratio 24.3% in this study) is crucial to obtain the tractable formation and rupture of conduction filament. Neither higher nor lowerVO··density than the optimized results in detrimental reliability issues, which may be ascribed to an uncontrollable filament in an abundant vacancy environment or a weak conducting path, respectively. As the second governing mechanism determining the memristor performance and reliability, it is suggested that metallization materials need to be carefully selected based on the thermodynamic redox potential and interfacial stability of the metallization material with IGZO. Metallization materials with larger reduction potential and interfacial stability are found to yield higher switching on/off ratio and greater device performance reliability.more » « less
-
Abstract 2D magnetic materials hold promise for quantum and spintronic applications. 2D antiferromagnetic materials are of particular interest due to their relative insensitivity to external magnetic fields and higher switching speeds compared to 2D ferromagnets. However, their lack of macroscopic magnetization impedes detection and control of antiferromagnetic order, thus motivating magneto‐electrical measurements for these purposes. Additionally, many 2D magnetic materials are ambient‐reactive and electrically insulating or highly resistive below their magnetic ordering temperatures, which imposes severe constraints on electronic device fabrication and characterization. Herein, these issues are overcome via a fabrication protocol that achieves electrically conductive devices from the ambient‐reactive 2D antiferromagnetic semiconductor NiI2. The resulting gate‐tunable transistors show band‐like electronic transport below the antiferromagnetic and multiferroic transition temperatures of NiI2, revealing a Hall mobility of 15 cm2 V−1 s−1at 1.7 K. These devices also allow direct electrical probing of the thickness‐dependent multiferroic phase transition temperature of NiI2from 59 K (bulk) to 28 K (monolayer).more » « less