The Magnetospheric Multi-scale Mission has frequently observed periodic bursts of counterstreaming electrons with energies ranging from ≈ 30 to 500 keV at the Earth's magnetospheric boundary layers, termed “microinjections.” Recently, a source region for microinjections was discovered at the high-latitude magnetosphere where microinjections showed up simultaneously at all energy channels and were organized by magnetic field variation associated with ultra low frequency mirror mode waves (MMWs) with ≈ 5 min periodicity. These MMWs were associated with strong higher frequency electromagnetic wave activity. Here, we have identified some of these waves as electromagnetic ion cyclotron (EMIC) waves. EMIC waves and parallel electric fields often lead to the radiation belt electron losses due to pitch-angle scattering. We show that, for the present event, the EMIC waves are not responsible for scattering electrons into a loss cone, and thus, they are unlikely to be responsible for the observed microinjection signature. We also find that the parallel electric field potentials within the waves are not adequate to explain the observed electrons with >90 keV energies. While whistler waves may contribute to the electron scattering and may exist during this event, there was no burst mode data available to verify this.
more »
« less
Statistical Study of the Energetic Electron Microinjections at the High‐Latitude Magnetosphere
Abstract Understanding the formation of the seed population for the energetic electrons trapped within the Earth's Van Allen radiation belts has been under debate for decades. The magnetic reconnection in the Earth's magnetotail during the substorms is the main process of accelerating the electrons to the tens to hundreds of keV. These electrons are further injected toward the radiation belts, where they get further accelerated to relativistic energies. Recently, it has been suggested that another source could come from the dayside diamagnetic cavities where electrons and ions can be locally energized to hundreds of keV energies. It has been shown that the physical mechanism within the cavities can create a strong acceleration perpendicular to magnetic field, which can lead to temperature anisotropy and drift mirror instability. The electron fluxes localized within the troughs of the mirror mode waves exhibit the counter‐streaming “microinjection” signature. To investigate the origin of microinjections and their dependence on solar wind conditions, here we have performed an event search and a statistical study of their properties encompassing a total of ∼165 hr (47 microinjection events) of Magnetospheric Multiscale observations at the pre‐dusk sector high‐latitude boundary layer. The ultralow frequency range magnetic field fluctuations coincided with the counter‐streaming energetic electron fluxes. For most events, the interplanetary magnetic field was duskward and anti‐sunward; over 60% of these microinjections satisfy the criteria of the drift mirror instability, which indicates the temperature anisotropy could play an important role for the microinjection.
more »
« less
- Award ID(s):
- 2308853
- PAR ID:
- 10510442
- Publisher / Repository:
- John Wiley & Sons, Inc.
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 128
- Issue:
- 10
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Understanding the physical mechanisms responsible for the cross‐scale energy transport and plasma heating from solar wind into the Earth's magnetosphere is of fundamental importance for magnetospheric physics and for understanding these processes in other places in the universe with comparable plasma parameter ranges. This paper presents observations from the Magnetosphere Multiscale (MMS) mission at the dawn‐side high‐latitude dayside boundary layer on February 25, 2016 between 18:55 and 20:05 UT. During this interval, MMS encountered both the inner and outer boundary layers with quasiperiodic low frequency fluctuations in all plasma and field parameters. The frequency analysis and growth rate calculations are consistent with the Kelvin‐Helmholtz instability (KHI). The intervals within the low frequency wave structures contained several counter‐streaming, low‐ (0–200 eV) and mid‐energy (200 eV–2 keV) electrons in the loss cone and trapped energetic (70–600 keV) electrons in alternate intervals. The counter‐streaming electron intervals were associated with large‐magnitude field‐aligned Poynting fluxes. Burst mode data at the large Alfvén velocity gradient revealed a strong correlation between counter streaming electrons, enhanced parallel electron temperatures, strong anti‐field aligned wave Poynting fluxes, and wave activity from sub‐proton cyclotron frequencies extending to electron cyclotron frequency. Waves were identified as Kinetic Alfvén waves but their contribution to parallel electron heating was not sufficient to explain the >100 eV electrons.more » « less
-
Abstract Resonant interactions of energetic electrons with electromagnetic whistler‐mode waves (whistlers) contribute significantly to the dynamics of electron fluxes in Earth's outer radiation belt. At low geomagnetic latitudes, these waves are very effective in pitch angle scattering and precipitation into the ionosphere of low equatorial pitch angle, tens of keV electrons and acceleration of high equatorial pitch angle electrons to relativistic energies. Relativistic (hundreds of keV), electrons may also be precipitated by resonant interaction with whistlers, but this requires waves propagating quasi‐parallel without significant intensity decrease to high latitudes where they can resonate with higher energy low equatorial pitch angle electrons than at the equator. Wave propagation away from the equatorial source region in a non‐uniform magnetic field leads to ray divergence from the originally field‐aligned direction and efficient wave damping by Landau resonance with suprathermal electrons, reducing the wave ability to scatter electrons at high latitudes. However, wave propagation can become ducted along field‐aligned density peaks (ducts), preventing ray divergence and wave damping. Such ducting may therefore result in significant relativistic electron precipitation. We present evidence that ducted whistlers efficiently precipitate relativistic electrons. We employ simultaneous near‐equatorial and ground‐based measurements of whistlers and low‐altitude electron precipitation measurements by ELFIN CubeSat. We show that ducted waves (appearing on the ground) efficiently scatter relativistic electrons into the loss cone, contrary to non‐ducted waves (absent on the ground) precipitating onlykeV electrons. Our results indicate that ducted whistlers may be quite significant for relativistic electron losses; they should be further studied statistically and possibly incorporated in radiation belt models.more » « less
-
Abstract Earth's magnetotail is filled with solar wind and ionospheric electrons, whose initial energies are significantly lower than the typical energies (temperatures) of plasmasheet electrons. One of the most common mechanisms responsible for heating of solar wind and ionospheric electrons in Earth's magnetotail is adiabatic heating caused by earthward convection of these electrons from the deep tail (i.e., from the region of a weak magnetic field) toward the region of stronger magnetic fields closer to Earth. This heating is moderated by electron losses into the ionosphere due to local wave scattering. In this study, we compare electron spectra from simultaneous observations of The Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft at different radial distances with spectra obtained from a simple model that includes adiabatic heating and losses. Our comparison shows that the model heating significantly overestimates the increase in energetic ( keV) electron fluxes, indicating that losses are essential for accurate modeling of the observed spectra. The required electron losses are similar to or even greater than the losses in the strong diffusion limit (when the loss cone is full). The latter can be interpreted as loss cone widening by field‐aligned electron acceleration.more » « less
-
Abstract Lightning‐induced Electron Precipitation (LEP) is a known process of electron loss in the Earth's radiation belts. An LEP event progresses with Very Low Frequency (VLF) radio wave radiation from lightning, trans‐ionospheric propagation, and wave‐particle gyroresonance interaction with energetic radiation belt electrons. Pitch angle scattered electrons then precipitate onto the ionosphere, allowing detection using VLF remote sensing using high power transmitters. The relative importance of LEP events as a radiation belt electron lifetime driver has heretofore been unclear. We build off a massive database of LEP events observed within the continental US (CONUS) by a network of VLF receivers. For each observed LEP event, based on the characteristics of the ionospheric disturbance, we apply a suite of models to estimate the total number of precipitating electrons, which we can then sum up over all LEP events to quantify lightning's contribution within CONUS. We find that LEP events within CONUS appear to be capable of removing a substantial fraction (up to 0.1%–1%) of radiation belt electrons between 33 and 1,000 keV, and may have stronger contributions to radiation belt losses than earlier estimates.more » « less