Abstract Electromagnetic ion cyclotron (EMIC) waves can drive precipitation of tens of keV protons and relativistic electrons, and are a potential candidate for causing radiation belt flux dropouts. In this study, we quantitatively analyze three cases of EMIC‐driven precipitation, which occurred near the dusk sector observed by multiple Low‐Earth‐Orbiting (LEO) Polar Operational Environmental Satellites/Meteorological Operational satellite programme (POES/MetOp) satellites. During EMIC wave activity, the proton precipitation occurred from few tens of keV up to hundreds of keV, while the electron precipitation was mainly at relativistic energies. We compare observations of electron precipitation with calculations using quasi‐linear theory. For all cases, we consider the effects of other magnetospheric waves observed simultaneously with EMIC waves, namely, plasmaspheric hiss and magnetosonic waves, and find that the electron precipitation at MeV energies was predominantly caused by EMIC‐driven pitch angle scattering. Interestingly, each precipitation event observed by a LEO satellite extended over a limited L shell region (ΔL ~ 0.3 on average), suggesting that the pitch angle scattering caused by EMIC waves occurs only when favorable conditions are met, likely in a localized region. Furthermore, we take advantage of the LEO constellation to explore the occurrence of precipitation at different L shells and magnetic local time sectors, simultaneously with EMIC wave observations near the equator (detected by Van Allen Probes) or at the ground (measured by magnetometers). Our analysis shows that although EMIC waves drove precipitation only in a narrow ΔL, electron precipitation was triggered at various locations as identified by POES/MetOp over a rather broad region (up to ~4.4 hr MLT and ~1.4 Lshells) with similar patterns between satellites.
more »
« less
Wave analysis during energetic electron microinjections: A case study
The Magnetospheric Multi-scale Mission has frequently observed periodic bursts of counterstreaming electrons with energies ranging from ≈ 30 to 500 keV at the Earth's magnetospheric boundary layers, termed “microinjections.” Recently, a source region for microinjections was discovered at the high-latitude magnetosphere where microinjections showed up simultaneously at all energy channels and were organized by magnetic field variation associated with ultra low frequency mirror mode waves (MMWs) with ≈ 5 min periodicity. These MMWs were associated with strong higher frequency electromagnetic wave activity. Here, we have identified some of these waves as electromagnetic ion cyclotron (EMIC) waves. EMIC waves and parallel electric fields often lead to the radiation belt electron losses due to pitch-angle scattering. We show that, for the present event, the EMIC waves are not responsible for scattering electrons into a loss cone, and thus, they are unlikely to be responsible for the observed microinjection signature. We also find that the parallel electric field potentials within the waves are not adequate to explain the observed electrons with >90 keV energies. While whistler waves may contribute to the electron scattering and may exist during this event, there was no burst mode data available to verify this.
more »
« less
- Award ID(s):
- 2308853
- PAR ID:
- 10510448
- Publisher / Repository:
- AIP Publishing LLC
- Date Published:
- Journal Name:
- Physics of Plasmas
- Volume:
- 30
- Issue:
- 7
- ISSN:
- 1070-664X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Energetic electron losses in the Earth's inner magnetosphere are dominated by outward radial diffusion and scattering into the atmosphere by various electromagnetic waves. The two most important wave modes responsible for electron scattering are electromagnetic ion cyclotron (EMIC) waves and whistler‐mode waves (whistler waves) that, acting together, can provide rapid electron losses over a wide energy range from few keV to few MeV. Wave‐particle resonant interaction resulting in electron scattering is well described by quasi‐linear diffusion theory using the cold plasma dispersion, whereas the effects of nonlinear resonances and hot plasma dispersion are less well understood. This study aims to examine these effects and estimate their significance for a particular event during which both wave modes are quasi‐periodically modulated by ultra‐low‐frequency (ULF) compressional waves. Such modulation of EMIC and whistler wave amplitudes provides a unique opportunity to compare nonlinear resonant scattering (important for the most intense waves) with quasi‐linear diffusion (dominant for low‐intensity waves). The same modulation of plasma properties allows better characterization of hot plasma effects on the EMIC wave dispersion. Although hot plasma effects significantly increase the minimum resonant energy,Emin, for the most intense EMIC waves, such effects become negligible for the higher frequency part of the hydrogen‐band EMIC wave spectrum. Nonlinear phase trapping of 300–500 keV electrons through resonances with whistler waves may accelerate and make them resonant with EMIC waves that, in turn, quickly scatter those electrons into the loss‐cone. Our results highlight the importance of nonlinear effects for simulations of energetic electron fluxes in the inner magnetosphere.more » « less
-
Abstract The two most important wave modes responsible for energetic electron scattering to the Earth's ionosphere are electromagnetic ion cyclotron (EMIC) waves and whistler‐mode waves. These wave modes operate in different energy ranges: whistler‐mode waves are mostly effective in scattering sub‐relativistic electrons, whereas EMIC waves predominately scatter relativistic electrons. In this study, we report the direct observations of energetic electron (from 50 keV to 2.5 MeV) scattering driven by the combined effect of whistler‐mode and EMIC waves using ELFIN measurements. We analyze five events showing EMIC‐driven relativistic electron precipitation accompanied by bursts of whistler‐driven precipitation over a wide energy range. These events reveal an enhancement of relativistic electron precipitation by EMIC waves during intervals of whistler‐mode precipitation compared to intervals of EMIC‐only precipitation. We discuss a possible mechanism responsible for such precipitation. We suggest that below the minimum resonance energy (Emin) of EMIC waves, the whistler‐mode wave may both scatter electrons into the loss‐cone and accelerate them to higher energy (1–3 MeV). Electrons accelerated aboveEminresonate with EMIC waves that, in turn, quickly scatter those electrons into the loss‐cone. This enhances relativistic electron precipitation beyond what EMIC waves alone could achieve. We present theoretical support for this mechanism, along with observational evidence from the ELFIN mission. We discuss methodologies for further observational investigations of this combined whistler‐mode and EMIC precipitation.more » « less
-
Abstract Electromagnetic ion cyclotron (EMIC) waves are known to be efficient for precipitating >1 MeV electrons from the magnetosphere into the upper atmosphere. Despite considerable evidence showing that EMIC‐driven electron precipitation can extend down to sub‐MeV energies, the precise physical mechanism driving sub‐MeV electron precipitation remains an active area of investigation. In this study, we present an electron precipitation event observed by ELFIN CubeSats on 11 January 2022, exclusively at sub‐MeV energy atL ∼ 8–10.5, where trapped MeV electrons were nearly absent. The THEMIS satellites observed conjugate H‐band and He‐band EMIC waves and hiss waves in plasmaspheric plumes near the magnetic equator. Quasi‐linear diffusion results demonstrate that the observed He‐band EMIC waves, with a high ratio of plasma to electron cyclotron frequency, can drive electron precipitation down to ∼400 keV. Our findings suggest that exclusive sub‐MeV precipitation (without concurrent MeV precipitation) can be associated with EMIC waves, especially in the plume region at highLshells.more » « less
-
Abstract Understanding the formation of the seed population for the energetic electrons trapped within the Earth's Van Allen radiation belts has been under debate for decades. The magnetic reconnection in the Earth's magnetotail during the substorms is the main process of accelerating the electrons to the tens to hundreds of keV. These electrons are further injected toward the radiation belts, where they get further accelerated to relativistic energies. Recently, it has been suggested that another source could come from the dayside diamagnetic cavities where electrons and ions can be locally energized to hundreds of keV energies. It has been shown that the physical mechanism within the cavities can create a strong acceleration perpendicular to magnetic field, which can lead to temperature anisotropy and drift mirror instability. The electron fluxes localized within the troughs of the mirror mode waves exhibit the counter‐streaming “microinjection” signature. To investigate the origin of microinjections and their dependence on solar wind conditions, here we have performed an event search and a statistical study of their properties encompassing a total of ∼165 hr (47 microinjection events) of Magnetospheric Multiscale observations at the pre‐dusk sector high‐latitude boundary layer. The ultralow frequency range magnetic field fluctuations coincided with the counter‐streaming energetic electron fluxes. For most events, the interplanetary magnetic field was duskward and anti‐sunward; over 60% of these microinjections satisfy the criteria of the drift mirror instability, which indicates the temperature anisotropy could play an important role for the microinjection.more » « less