skip to main content

This content will become publicly available on November 13, 2024

Title: Understanding the Effects of Using Parsons Problems to Scaffold Code Writing for Students with Varying CS Self-Efficacy Levels
Introductory programming courses aim to teach students to write code independently. However, transitioning from studying worked examples to generating their own code is often difficult and frustrating for students, especially those with lower CS self-efficacy in general. Therefore, we investigated the impact of using Parsons problems as a code-writing scaffold for students with varying levels of CS self-efficacy. Parsons problems are programming tasks where students arrange mixed-up code blocks in the correct order. We conducted a between-subjects study with undergraduate students (N=89) on a topic where students have limited code-writing expertise. Students were randomly assigned to one of two conditions. Students in one condition practiced writing code without any scaffolding, while students in the other condition were provided with scaffolding in the form of an equivalent Parsons problem. We found that, for students with low CS self-efficacy levels, those who received scaffolding achieved significantly higher practice performance and in-practice problem-solving efficiency compared to those without any scaffolding. Furthermore, when given Parsons problems as scaffolding during practice, students with lower CS selfefficacy were more likely to solve them. In addition, students with higher pre-practice knowledge on the topic were more likely to effectively use the Parsons scaffolding. This study provides evidence for the benefits of using Parsons problems to scaffold students’ write-code activities. It also has implications for optimizing the Parsons scaffolding experience for students, including providing personalized and adaptive Parsons problems based on the student’s current problem-solving status.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Publisher / Repository:
Date Published:
Journal Name:
Proceedings of the 23rd Koli Calling International Conference on Computing Education Research (Koli Calling)
Page Range / eLocation ID:
1 to 12
Medium: X
Koli Finland
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we explore using Parsons problems to scaffold novice programmers who are struggling while solving write-code problems. Parsons problems, in which students put mixed-up code blocks in order, can be created quickly and already serve thousands of students while other types of programming support methods are expensive to develop or do not scale. We conducted two studies in which novices were given equivalent Parsons problems as optional scaffolding while solving write-code problems. We investigated when, why, and how students used the Parsons problems as well as their perceptions of the benefits and challenges. A think-aloud observational study with 11 undergraduate students showed that students utilized the Parsons problem before writing a solution to get ideas about where to start; during writing a solution when they were stuck; and after writing a solution to debug errors and look for better strategies. Semi-structured interviews with the same 11 undergraduate students provided evidence that using Parsons problems to scaffold write-code problems helped students to reduce the difficulty, reduce the problem completion time, learn problem-solving strategies, and refine their programming knowledge. However, some students found them less useful if the Parsons solution did not match their approach or if they did not understand the solution. We then conducted a between-subjects classroom study with 81 undergraduate students to investigate the effects on learning. We found that students who received Parsons problems as scaffolding during write-code problems spent significantly less time solving those problems. However, there was no significant learning gain in either condition from pretest to posttest. We also discuss the design implications of our findings. 
    more » « less
  2. Novice programmers struggle with writing code from scratch. One possible way to help them is by using an equivalent Parsons problem on demand, where learners place mixed-up code blocks in the correct order. In a classroom study with 89 undergraduate students, we examined how using a Parsons problem as scaffolding impacts performance and problem-solving efficiency. Results showed that students in the Parsons as Help group achieved significantly higher practice performance and problem-solving efficiency than students who wrote code without help, while achieving the same level of posttest scores. These results improve the understanding of Parsons problems and contribute to the design of future coding practices. 
    more » « less
  3. Novice programmers need to write basic code as part of the learning process, but they often face difficulties. To assist struggling students, we recently implemented personalized Parsons problems, which are code puzzles where students arrange blocks of code to solve them, as pop-up scaffolding. Students found them to be more engaging and preferred them for learning, instead of simply receiving the correct answer, such as the response they might get from generative AI tools like ChatGPT. However, a drawback of using Parsons problems as scaffolding is that students may be able to put the code blocks in the correct order without fully understanding the rationale of the correct solution. As a result, the learning benefits of scaffolding are compromised. Can we improve the understanding of personalized Parsons scaffolding by providing textual code explanations? In this poster, we propose a design that incorporates multiple levels of textual explanations for the Parsons problems. This design will be used for future technical evaluations and classroom experiments. These experiments will explore the effectiveness of adding textual explanations to Parsons problems to improve instructional benefits. 
    more » « less
  4. null (Ed.)
    We developed a tutor for imperative programming in C++. It covers algorithm formulation, program design and coding – all three stages involved in writing a program to solve a problem. The design of the tutor is epistemic, i.e., true to real-life programming practice. The student works through all the three stages of programming in interleaved fashion, and within the context of a single code canvas. The student has the sole agency to compose the program and write the code. The tutor uses goals and plans as prompts to scaffold the student through the programming process designed by an expert. It provides drill-down immediate feed-back at the abstract, concrete and bottom-out levels at each step. So, by the end of the session, the student is guaranteed to write the complete and correct program for a given problem. We used model-based architecture to implement the tutor be-cause of the ease with which it facilitates adding problems to the tutor. In a preliminary study, we found that practicing with the tutor helped students solve problems with fewer erroneous actions and less time. 
    more » « less
  5. Culbertson, J. ; Perfors, A. ; Rabagliati, H. ; Ramenzoni, V. (Ed.)
    Integrating visual representations in an interactive learning activity effectively scaffolds performance and learning. However, it is unclear whether and how sustaining or interleaving visual scaffolding helps learners solve problems efficiently and learn from problem solving. We conducted a classroom study with 63 middle-school students in which we tested whether sustaining or interleaving a particular form of visual scaffolding, called anticipatory diagrammatic self-explanation in an Intelligent Tutoring System, helps students’ learning and performance in the domain of early algebra. Sustaining visual scaffolding during problem solving helped students solve problems efficiently with no negative effects on learning. However, in-depth log data analyses suggest that interleaving visual scaffolding allowed students to practice important skills that may help them in later phases of algebra learning. This paper extends scientific understanding that sustaining visual scaffold does not over-scaffold student learning in the early phase of skill acquisition in algebra. 
    more » « less