skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on February 23, 2025

Title: Arctic sea ice retreat fuels boreal forest advance

Climate-induced northward advance of boreal forest is expected to lessen albedo, alter carbon stocks, and replace tundra, but where and when this advance will occur remains largely unknown. Using data from 19 sites across 22 degrees of longitude along the tree line of northern Alaska, we show a stronger temporal correlation of tree ring growth with open water uncovered by retreating Arctic sea ice than with air temperature. Spatially, our results suggest that tree growth, recruitment, and range expansion are causally linked to open water through associated warmer temperatures, deeper snowpacks, and improved nutrient availability. We apply a meta-analysis to 82 circumarctic sites, finding that proportionally more tree lines have advanced where proximal to ongoing sea ice loss. Taken together, these findings underpin how and where changing sea ice conditions facilitate high-latitude forest advance.

 
more » « less
Award ID(s):
2129120
NSF-PAR ID:
10510518
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Science
Date Published:
Journal Name:
Science
Volume:
383
Issue:
6685
ISSN:
0036-8075
Page Range / eLocation ID:
877 to 884
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Retreat of the Laurentide Ice Sheet 20 000 years ago tremendously altered environmental conditions and opened territory to the boreal spruce forest expansion. However, the details of forest colonization during the rapid climate warming and the adaptation of the newly developed stands to short cooling episodes during the warming and degradation of the ice sheet are not known. Preservation of wood from the glacial to postglacial transition offers the opportunity for examination of high-frequency growth variability in response to hemispheric and local forcings on temperature and hydrology. Here we consider growth of spruce at three sites from the interior of Northern America developed at ca. 13 700, 12 100, and 11 300 calibrated years before present (cal years BP), with well-replicated tree-ring chronologies spanning from 116 to 310 years. The data show at least two generations of trees established at each of the sites promoted by short, warm intervals. The tree mortality was variously affected by both cold conditions and the influence of rising water table and sediment burial. The history of these stands indicates breaks in forest colonization following a century (or two) of successful migrations. Interestingly, the thinning of the spruce forest did not seem to open pioneering opportunities for other tree species at those times. 
    more » « less
  2. Abstract

    Much is still unknown about the growth and physiological responses of trees to global change at the northern treeline. We combined tree‐ring width data with century‐long stable carbon and oxygen isotope records to investigate growth and physiological responses of white spruce at two treeline sites in the Canadian Arctic to concurrent increases in temperature, atmospheric CO2concentration (ca), and decline in sea ice extent over the past century. The tree‐ring records were assessed during three periods with contrasting climatic conditions: (a) the early 20th century warming, (b) the 1940–1970 cooling period, and (c) the anthropogenic late 20th century warming period. We found opposing growth trends between the two sites, but similar carbon isotope discrimination (Δ13C) and intrinsic water‐use efficiency (iWUE) trajectories. While tree growth (defined as basal area increment) increased at the site nearer to the Arctic Ocean during the 20th century following the rise in temperature and sea ice loss, growth declined after 1950 at the more interior site. At both sites, Δ13C slightly increased over these periods. However, trees showed a nonlinear response to increasedca, shifting after 1970 from a passive stomatal response (i.e., no changes iniWUE) to an active response (i.e., a moderate ∼12% increase iniWUE). Further, our isotope‐based findings do not support the idea that temperature‐induced drought stress caused the divergent growth trends at our treeline sites. This study thus highlights nonlinear and complex physiological and growth adjustments to concomitant changes in temperature, sea ice extent, andcaover the last century at the northern treeline.

     
    more » « less
  3. Westergaard-Nielsen, Andreas (Ed.)
    Massive declines in sea ice cover and widespread warming seawaters across the Pacific Arctic region over the past several decades have resulted in profound shifts in marine ecosystems that have cascaded throughout all trophic levels. The Distributed Biological Observatory (DBO) provides sampling infrastructure for a latitudinal gradient of biological “hotspot” regions across the Pacific Arctic region, with eight sites spanning the northern Bering, Chukchi, and Beaufort Seas. The purpose of this study is two-fold: (a) to provide an assessment of satellite-based environmental variables for the eight DBO sites (including sea surface temperature (SST), sea ice concentration, annual sea ice persistence and the timing of sea ice breakup/formation, chlorophyll- a concentrations, primary productivity, and photosynthetically available radiation (PAR)) as well as their trends across the 2003–2020 time period; and (b) to assess the importance of sea ice presence/open water for influencing primary productivity across the region and for the eight DBO sites in particular. While we observe significant trends in SST, sea ice, and chlorophyll- a /primary productivity throughout the year, the most significant and synoptic trends for the DBO sites have been those during late summer and autumn (warming SST during October/November, later shifts in the timing of sea ice formation, and increases in chlorophyll- a /primary productivity during August/September). Those DBO sites where significant increases in annual primary productivity over the 2003–2020 time period have been observed include DBO1 in the Bering Sea (37.7 g C/m 2 /year/decade), DBO3 in the Chukchi Sea (48.0 g C/m 2 /year/decade), and DBO8 in the Beaufort Sea (38.8 g C/m 2 /year/decade). The length of the open water season explains the variance of annual primary productivity most strongly for sites DBO3 (74%), DBO4 in the Chukchi Sea (79%), and DBO6 in the Beaufort Sea (78%), with DBO3 influenced most strongly with each day of additional increased open water (3.8 g C/m 2 /year per day). These synoptic satellite-based observations across the suite of DBO sites will provide the legacy groundwork necessary to track additional and inevitable future physical and biological change across the region in response to ongoing climate warming. 
    more » « less
  4. Abstract

    In this study, we report 20 years of data from three ponderosa pine plantations in northern California. Our sites span a natural gradient of forest productivity where climate variability and edaphic conditions delineate marked differences in baseline productivity (approximately threefold). Experimental herbicide application and fertilization significantly reduced competition and improved tree growth by 1.4‐ to 2.2‐fold across sites. At the site of lowest productivity, where soils are poorly developed and water limiting, tree growth increased strongly in response to understory suppression. Small but significant improvements in tree growth were observed in response to understory suppression at the moderate‐productivity site. At the site of highest productivity, where climate is favorable and soils well developed, fertilization increased productivity to a greater extent than did understory suppression. In most cases, the effect of understory suppression and fertilization caused an unexpected growth release, exceeding the anticipated maximum productivity by >5 m of additional height and 60–100% more basal area. At the site of highest productivity, however, understory suppression caused a weak increase on late‐season growth compared to fertilization alone, suggesting a beneficial effect of understory vegetation on long‐term growth at that site. Tree ring cellulose carbon isotopes indicate a negative relationship between intrinsic water use efficiency (iWUE) and tree growth in control stands, which shifted to a positive relationship as both iWUE and tree growth increased in response to management. Cellulose oxygen isotope ratios (δ18O) were positively correlated with iWUE and negatively correlated with vapor pressure deficit across sites, but δ18O was not a strong predictor of tree growth.

     
    more » « less
  5. Abstract

    As drought variability increases in forests around the globe, it is critical to evaluate and understand ecosystem attributes that ameliorate drought impacts. Trees in arid and semi‐arid ecosystems can sustain tree growth and transpiration during drought by accessing shallow groundwater, yet the extent to which groundwater influences forest growth and transpiration in humid environments has largely been unexplored. We quantified groundwater's influence on tree growth and transpiration in northern humid forests with sandy soils. We hypothesized that even in wet regions, soil droughts occur relatively frequently in forests with sandy soils and result in water stress and reduced tree growth. Further, we hypothesized these reductions in productivity are ameliorated if the forest can access shallow groundwater during dry conditions. We evaluated tree growth responses using tree cores inPinus resinosatrees and estimated forest groundwater use from diel water table fluctuations across sites covering a 1‐ to 9‐m depth‐to‐groundwater (DTG) gradient. In areas of shallow groundwater (DTG < 2.5 m), we observed twice as much tree growth and high, frequent groundwater use (up to 81% of non‐rainy summer days). Groundwater's influence on tree growth and transpiration declined as groundwater deepened along the DTG gradient in the range 1–5 m below land surface. These findings suggest that water provided by a shallow water table subsidizes evapotranspiration in humid forests and results in enhanced tree growth. Our research provides a basis for understanding the role of groundwater in conferring drought resistance in humid forests to help guide sustainable water and forest management decisions.

     
    more » « less