The negative growth response of North American boreal forest trees to warm summers is well documented and the constraint of competition on tree growth widely reported, but the potential interaction between climate and competition in the boreal forest is not well studied. Because competition may amplify or mute tree climate‐growth responses, understanding the role current forest structure plays in tree growth responses to climate is critical in assessing and managing future forest productivity in a warming climate. Using white spruce tree ring and carbon isotope data from a long‐term vegetation monitoring program in Denali National Park and Preserve, we investigated the hypotheses that (a) competition and site moisture characteristics mediate white spruce radial growth response to climate and (b) moisture limitation is the mechanism for reduced growth. We further examined the impact of large reproductive events (mast years) on white spruce radial growth and stomatal regulation. We found that competition and site moisture characteristics mediated white spruce climate‐growth response. The negative radial growth response to warm and dry early‐ to mid‐summer and dry late summer conditions intensified in high competition stands and in areas receiving high potential solar radiation. Discrimination against 13C was reduced in warm, dry summers and further diminished on south‐facing hillslopes and in high competition stands, but was unaffected by climate in open floodplain stands, supporting the hypothesis that competition for moisture limits growth. Finally, during mast years, we found a shift in current year's carbon resources from radial growth to reproduction, reduced 13C discrimination, and increased intrinsic water‐use efficiency. Our findings highlight the importance of temporally variable and confounded factors, such as forest structure and climate, on the observed climate‐growth response of white spruce. Thus, white spruce growth trends and productivity in a warming climate will likely depend on landscape position and current forest structure.
more »
« less
Ancient boreal forests under the environmental instability of the glacial to postglacial transition in the Great Lakes region (14 000 – 11 000 years BP)
Retreat of the Laurentide Ice Sheet 20 000 years ago tremendously altered environmental conditions and opened territory to the boreal spruce forest expansion. However, the details of forest colonization during the rapid climate warming and the adaptation of the newly developed stands to short cooling episodes during the warming and degradation of the ice sheet are not known. Preservation of wood from the glacial to postglacial transition offers the opportunity for examination of high-frequency growth variability in response to hemispheric and local forcings on temperature and hydrology. Here we consider growth of spruce at three sites from the interior of Northern America developed at ca. 13 700, 12 100, and 11 300 calibrated years before present (cal years BP), with well-replicated tree-ring chronologies spanning from 116 to 310 years. The data show at least two generations of trees established at each of the sites promoted by short, warm intervals. The tree mortality was variously affected by both cold conditions and the influence of rising water table and sediment burial. The history of these stands indicates breaks in forest colonization following a century (or two) of successful migrations. Interestingly, the thinning of the spruce forest did not seem to open pioneering opportunities for other tree species at those times.
more »
« less
- Award ID(s):
- 0213696
- PAR ID:
- 10343021
- Date Published:
- Journal Name:
- Canadian Journal of Forest Research
- Volume:
- 43
- Issue:
- 11
- ISSN:
- 0045-5067
- Page Range / eLocation ID:
- 1032 to 1039
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Much is still unknown about the growth and physiological responses of trees to global change at the northern treeline. We combined tree‐ring width data with century‐long stable carbon and oxygen isotope records to investigate growth and physiological responses of white spruce at two treeline sites in the Canadian Arctic to concurrent increases in temperature, atmospheric CO2concentration (ca), and decline in sea ice extent over the past century. The tree‐ring records were assessed during three periods with contrasting climatic conditions: (a) the early 20th century warming, (b) the 1940–1970 cooling period, and (c) the anthropogenic late 20th century warming period. We found opposing growth trends between the two sites, but similar carbon isotope discrimination (Δ13C) and intrinsic water‐use efficiency (iWUE) trajectories. While tree growth (defined as basal area increment) increased at the site nearer to the Arctic Ocean during the 20th century following the rise in temperature and sea ice loss, growth declined after 1950 at the more interior site. At both sites, Δ13C slightly increased over these periods. However, trees showed a nonlinear response to increasedca, shifting after 1970 from a passive stomatal response (i.e., no changes iniWUE) to an active response (i.e., a moderate ∼12% increase iniWUE). Further, our isotope‐based findings do not support the idea that temperature‐induced drought stress caused the divergent growth trends at our treeline sites. This study thus highlights nonlinear and complex physiological and growth adjustments to concomitant changes in temperature, sea ice extent, andcaover the last century at the northern treeline.more » « less
-
Abstract Disturbances can interrupt feedbacks that maintain stable plant community structure and create windows of opportunity for vegetation to shift to alternative states. Boreal forests are dominated by tree species that overlap considerably in environmental niche, but there are few tests of what conditions initiate and sustain different forest states. Here, we examine patterns of post‐fire growth and density of tree seedlings in early succession and use structural equation models to estimate relative effects of environmental and pre‐fire conditions, fire characteristics, and biotic interactions. We surveyed tree seedling recruits for 13 yr across a broad range of environmental and fire conditions (n = 89) in Alaskan black spruce stands that burned in 2004. Densities of established seedlings at 13 yr were strongly determined by initial recruitment that occurred within 2 yr after fire. High proportional combustion of the soil organic layer (fire severity) led to increased densities of deciduous seedlings but not of black spruce and had a positive influence on aboveground biomass of all species. Biotic interactions such as mammalian herbivory or woody competition, potential mechanisms for relay floristic succession, had no detectable effects on tree seedling densities or biomass. Repeated surveys instead suggested persistent shifts in successional trajectories of tree communities from spruce to deciduous dominance at sites where high fire severity created positive conditions for deciduous seedling recruitment and growth. Unless future species interactions alter the deciduous dominance of tree seedling composition, the vegetation transformations that we observed in response to high fire severity are likely to persist over the short fire cycle that increasingly characterizes the fire regime of Interior Alaska.more » « less
-
White oak, a keystone species of the broadleaf forests of the North American Midwest, has a significant role in providing ecosystems services in a region experiencing warming and increasingly pluvial conditions. A one- hundred-year-old white oak stand in an arboretum, along with two second growth (~200-year-old) stands from Northeast Ohio have consistently responded positively to summer (June-July) precipitation over the past century, whereas four nearby old growth sites (>300 years old) have lost their moisture sensitivity since about the mid 1970s. This “fading drought signal,” which has been previously reported, appears to be more a result of the legacy of land use at the individual sites rather than tree age. The younger oak stands and their relative sustained drought sensitivity is also related to their history of recently attaining the canopy and similar responses associated with intervals of selective logging. All sites are strongly, negatively correlated with summer (June- July) maximum monthly temperatures and in general the maximum temperatures are negatively correlated with precipitation in those months. Future warming in the Midwest is projected to see increases in spring precipitation and likely decreases in late summer precipitation linked to a northward migration of the North American Westerly Jet. This projected decrease in summer precipitation coupled with an increase in maximum and min- imum summer temperatures in the coming decades would increase the moisture stress on these trees. Our ex- amination of these varying climate responses with respect to site characteristics and forest age can help future assessments of tree health and the forest’s ability to sequester carbon, as well as facilitate efforts to reconstruct climate by using a range of tree sites for intervals when sensitivity in old growth sites is lost.more » « less
-
null (Ed.)The transition zone between the northern boreal forest and the arctic tundra, known as the tundra-taiga ecotone (TTE) has undergone rapid warming in recent decades. In response to this warming, tree density, growth, and stand productivity are expected to increase. Increases in tree density have the potential to negate the positive impacts of warming on tree growth through a reduction in the active layer and an increase in competitive interactions. We assessed the effects of tree density on tree growth and climate-growth responses of Cajander larch (Larix cajanderi) and on trends in the normalized difference vegetation index (NDVI) in the TTE of Northeast Siberia. We examined 19 mature forest stands that all established after a fire in 1940 and ranged in tree density from 300 to 37,000 stems ha-1. High density stands with shallow active layers had lower tree growth, higher stand productivity, and more negative growth responses to growing season temperatures compared to low density stands with deep active layers. Variation in stand productivity across the density gradient was not captured by Landsat derived NDVI, but NDVI did capture annual variations in stand productivity. Our results suggest that the expected increases in tree density following fires at the TTE may effectively limit tree growth and that NDVI is unlikely to capture increasing productivity associated with changes in tree density.more » « less
An official website of the United States government

