skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ynamide and Azaalleneyl. Acid‐Base Promoted Chelotropic and Spin‐State Rearrangements in a Versatile Heterocumulene [(Ad)NCC( t Bu)] −
Abstract We introduce the heterocumulene ligand [(Ad)NCC(tBu)](Ad=1‐adamantyl (C10H15),tBu=tert‐butyl, (C4H9)), which can adopt two forms, the azaalleneyl and ynamide. This ligand platform can undergo a reversible chelotropic shift using Brønsted acid‐base chemistry, which promotes an unprecedented spin‐state change of the [VIII] ion. These unique scaffolds are prepared via addition of 1‐adamantyl isonitrile (C≡NAd) across the alkylidyne in complexes [(BDI)V≡CtBu(OTf)] (A) (BDI=ArNC(CH3)CHC(CH3)NAr), Ar=2,6‐iPr2C6H3) and [(dBDI)V≡CtBu(OEt2)] (B) (dBDI2−=ArNC(CH3)CHC(CH2)NAr). ComplexAreacts with C≡NAd, to generate the high‐spin [VIII] complex with a κ1‐N‐ynamide ligand, [(BDI)V{κ1‐N‐(Ad)NCC(tBu)}(OTf)] (1). Conversely,Breacts with C≡NAd to generate a low‐spin [VIII] diamagnetic complex having a chelated κ2‐C,N‐azaalleneyl ligand, [(dBDI)V{κ2‐N,C‐(Ad)NCC(tBu)}] (2). Theoretical studies have been applied to better understand the mechanism of formation of2and the electronic reconfiguration upon structural rearrangement by the alteration of ligand denticity between1and2.  more » « less
Award ID(s):
2154620
PAR ID:
10510538
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
63
Issue:
21
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Not, available (Ed.)
    Abstract Described here is a direct entry to two examples of 3d transition metal catalysts that are active for the cyclic polymerization of phenylacetylene, namely, [(BDI)M{κ2‐C,C‐(Me3SiC3SiMe3)}] (2‐M) (BDI=[ArNC(CH3)]2CH, Ar=2,6‐iPr2C6H3;M=Ti, V). Catalysts are prepared in one step by the treatment of [(BDI)MCl2] (1‐M,M=Ti,V) with 1,3‐dilithioallene [Li2(Me3SiC3SiMe3)]. Complexes2‐Mhave been spectroscopically and structurally characterized and the polymers that are catalytically formed from phenylacetylene were verified to have a cyclic topology based on a combination of size‐exclusion chromatography (SEC) and intrinsic viscosity studies. Two‐electron oxidation of2‐Vwith nitrous oxide (N2O) cleanly yields a [VV] alkylidene‐alkynyl oxo complex [(BDI)V(=O){κ1‐C‐(=C(SiMe3)CC(SiMe3))}] (3), which lends support for how this scaffold in2‐Mmight be operating in the polymerization of the terminal alkyne. This work demonstrates how alkylidynes can be circumvented using 1,3‐dianionic allene as a segue into M−C multiple bonds. 
    more » « less
  2. Abstract The imidophosphorane ligand, [NPtBu3](tBu=tert‐butyl), enables isolation of a pseudo‐tetrahedral, tetravalent praseodymium complex, [Pr4+(NPtBu3)4] (1‐Pr), which is characterized by a suite of physical characterization methods including single‐crystal X‐ray diffraction, electron paramagnetic resonance, and L3‐edge X‐ray near‐edge spectroscopies. Variable‐temperature direct‐current magnetic susceptibility data, supported by multiconfigurational quantum chemical calculations, demonstrate that the electronic structure diverges from the isoelectronic Ce3+analogue, driven by increased crystal field. The four‐coordinate environment around Pr4+in1‐Pr, which is unparalleled in reported extended solid systems, provides a unique opportunity to study the interplay between crystal field splitting and spin‐orbit coupling in a molecular tetravalent lanthanide within a pseudo‐tetrahedral coordination geometry. 
    more » « less
  3. Abstract Main‐group element‐mediated C−H activation remains experimentally challenging and the development of clear concepts and design principles has been limited by the increased reactivity of relevant complexes, especially for the heavier elements. Herein, we report that the stibenium ion [(pyCDC)Sb][NTf2]3(1) (pyCDC=bis‐pyridyl carbodicarbene; NTf2=bis(trifluoromethanesulfonyl)imide) reacts with acetonitrile in the presence of the base 2,6‐di‐tert‐butylpyridine to enable C(sp3)−H bond breaking to generate the stiba‐methylene nitrile complex [(pyCDC)Sb(CH2CN)][NTf2]2(2). Kinetic analyses were performed to elucidate the rate dependence for all the substrates involved in the reaction. Computational studies suggest that C−H activation proceeds via a mechanism in which acetonitrile first coordinates to the Sb center through the nitrogen atom in a κ1fashion, thereby weakening the C−H bond which can then be deprotonated by base in solution. Further, we show that1reacts with terminal alkynes in the presence of 2,6‐di‐tert‐butylpyridine to enable C(sp)−H bond breaking to form stiba‐alkynyl adducts of the type [(pyCDC)Sb(CCR)][NTf2]2(3 a–f). Compound1shows excellent specificity for the activation of the terminal C(sp)−H bond even across alkynes with diverse functionality. The resulting stiba‐methylene nitrile and stiba‐alkynyl adducts react with elemental iodine (I2) to produce iodoacetonitrile and iodoalkynes, while regenerating an Sb trication. 
    more » « less
  4. Abstract Manganese catalysts that activate hydrogen peroxide have seen increased use in organic transformations, such as olefin epoxidation and alkane C−H bond oxidation. Proposed mechanisms for these catalysts involve the formation and activation of MnIII‐hydroperoxo intermediates. Examples of well‐defined MnIII‐hydroperoxo complexes are rare, and the properties of these species are often inferred from MnIII‐alkylperoxo analogues. In this study, we show that the reaction of the MnIII‐hydroxo complex [MnIII(OH)(6Medpaq)]+(1) with hydrogen peroxide and acid results in the formation of a dark‐green MnIII‐hydroperoxo species [MnIII(OOH)(6Medpaq)]+(2). The formulation of2is based on electronic absorption,1H NMR, IR, and ESI‐MS data. The thermal decay of2follows a first order process, and variable‐temperature kinetic studies of the decay of2yielded activation parameters that could be compared with those of a MnIII‐alkylperoxo analogue. Complex2reacts with the hydrogen‐atom donor TEMPOH two‐fold faster than the MnIII‐hydroxo complex1. Complex2also oxidizes PPh3, and this MnIII‐hydroperoxo species is 600‐fold more reactive with this substrate than its MnIII‐alkylperoxo analogue [MnIII(OOtBu)(6Medpaq)]+. DFT and time‐dependent (TD) DFT computations are used to compare the electronic structure of2with similar MnIII‐hydroperoxo and MnIII‐alkylperoxo complexes. 
    more » « less
  5. Abstract Metalation of the polynucleating ligandF,tbsLH6(1,3,5‐C6H9(NC6H3−4‐F−2‐NSiMe2tBu)3) with two equivalents of Zn(N(SiMe3)2)2affords the dinuclear product (F,tbsLH2)Zn2(1), which can be further deprotonated to yield (F,tbsL)Zn2Li2(OEt2)4(2). Transmetalation of2with NiCl2(py)2yields the heterometallic, trinuclear cluster (F,tbsL)Zn2Ni(py) (3). Reduction of3with KC8affords [KC222][(F,tbsL)Zn2Ni] (4) which features a monovalent Ni centre. Addition of 1‐adamantyl azide to4generates the bridging μ3‐nitrenoid adduct [K(THF)3][(F,tbsL)Zn2Ni(μ3‐NAd)] (5). EPR spectroscopy reveals that the anionic cluster possesses a doublet ground state (S=). Cyclic voltammetry of5reveals two fully reversible redox events. The dianionic nitrenoid [K2(THF)9][(F,tbsL)Zn2Ni(μ3‐NAd)] (6) was isolated and characterized while the neutral redox isomer was observed to undergo both intra‐ and intermolecular H‐atom abstraction processes. Ni K‐edge XAS studies suggest a divalent oxidation state for the Ni centres in both the monoanionic and dianionic [Zn2Ni] nitrenoid complexes. However, DFT analysis suggests Ni‐borne oxidation for5. 
    more » « less