Reactions of the IrVhydride [MeBDIDipp]IrH4{BDI=(Dipp)NC(Me)CH(Me)CN(Dipp); Dipp=2,6‐
This content will become publicly available on February 19, 2025
Described here is a direct entry to two examples of 3d transition metal catalysts that are active for the cyclic polymerization of phenylacetylene, namely, [(BDI)M{κ2‐
- Award ID(s):
- 1908587
- PAR ID:
- 10537785
- Editor(s):
- Not, available
- Publisher / Repository:
- ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Edition / Version:
- 1
- Volume:
- 63
- Issue:
- 8
- ISSN:
- 1433-7851
- Page Range / eLocation ID:
- e202318956
- Subject(s) / Keyword(s):
- Alkylidene Alkylidyne Cyclic Polymer Deprotiometallacyclobutadiene Polymerization
- Format(s):
- Medium: X Size: 835KB Other: pdf
- Size(s):
- 835KB
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract i Pr2C6H3} with E[N(SiMe3)2]2(E=Sn, Pb) afforded the unusual dimeric dimetallotetrylenes ([MeBDIDipp]IrH)2(μ 2‐E)2in good yields. Moreover, ([MeBDIDipp]IrH)2(μ 2‐Ge)2was formed in situ from thermal decomposition of [MeBDIDipp]Ir(H)2Ge[N(SiMe3)2]2. These reactions are accompanied by liberation of HN(SiMe3)2and H2through the apparent cleavage of an E−N(SiMe3)2bond by Ir−H. In a reversal of this process, ([MeBDIDipp]IrH)2(μ 2‐E)2reacted with excess H2to regenerate [MeBDIDipp]IrH4. Varying the concentrations of reactants led to formation of the trimeric ([MeBDIDipp]IrH2)3(μ 2‐E)3. The further scope of this synthetic route was investigated with group 15 amides, and ([MeBDIDipp]IrH)2(μ 2‐Bi)2was prepared by the reaction of [MeBDIDipp]IrH4with Bi(NMe2)3or Bi(Ot Bu)3to afford the first example of a “naked” two‐coordinate Bi atom bound exclusively to transition metals. A viable mechanism that accounts for the formation of these products is proposed. Computational investigations of the Ir2E2(E=Sn, Pb) compounds characterized them as open‐shell singlets with confined nonbonding lone pairs at the E centers. In contrast, Ir2Bi2is characterized as having a closed‐shell singlet ground state. -
Abstract A low‐spin and mononuclear vanadium complex, (Menacnac)V(CO)(η2‐P≡C
t Bu) (2 ) (Menacnac−=[ArNC(CH3)]2CH, Ar=2,6‐i Pr2C6H3), was prepared upon treatment of the vanadium neopentylidyne complex (Menacnac)V≡Ct Bu(OTf) (1 ) with Na(OCP)(diox)2.5(diox=1,4‐dioxane), while the isoelectronic ate‐complex [Na(15‐crown‐5)]{([ArNC(CH2)]CH[C(CH3)NAr])V(CO)(η2‐P≡Ct Bu)} (4 ), was obtained via the reaction of Na(OCP)(diox)2.5and ([ArNC(CH2)]CH[C(CH3)NAr])V≡Ct Bu(OEt2) (3 ) in the presence of crown‐ether. Computational studies suggest that the P‐atom transfer proceeds by [2+2]‐cycloaddition of the P≡C bond across the V≡Ct Bu moiety, followed by a reductive decarbonylation to form the V−C≡O linkage. The nature of the electronic ground state in diamagnetic complexes,2 and4 , was further investigated both theoretically and experimentally, using a combination of density functional theory (DFT) calculations, UV/Vis and NMR spectroscopies, cyclic voltammetry, X‐ray absorption spectroscopy (XAS) measurements, and comparison of salient bond metrics derived from X‐ray single‐crystal structural characterization. In combination, these data are consistent with a low‐valent vanadium ion in complexes2 and4 . This study represents the first example of a metathesis reaction between the P‐atom of [PCO]−and an alkylidyne ligand. -
Abstract A low‐spin and mononuclear vanadium complex, (Menacnac)V(CO)(η2‐P≡C
t Bu) (2 ) (Menacnac−=[ArNC(CH3)]2CH, Ar=2,6‐i Pr2C6H3), was prepared upon treatment of the vanadium neopentylidyne complex (Menacnac)V≡Ct Bu(OTf) (1 ) with Na(OCP)(diox)2.5(diox=1,4‐dioxane), while the isoelectronic ate‐complex [Na(15‐crown‐5)]{([ArNC(CH2)]CH[C(CH3)NAr])V(CO)(η2‐P≡Ct Bu)} (4 ), was obtained via the reaction of Na(OCP)(diox)2.5and ([ArNC(CH2)]CH[C(CH3)NAr])V≡Ct Bu(OEt2) (3 ) in the presence of crown‐ether. Computational studies suggest that the P‐atom transfer proceeds by [2+2]‐cycloaddition of the P≡C bond across the V≡Ct Bu moiety, followed by a reductive decarbonylation to form the V−C≡O linkage. The nature of the electronic ground state in diamagnetic complexes,2 and4 , was further investigated both theoretically and experimentally, using a combination of density functional theory (DFT) calculations, UV/Vis and NMR spectroscopies, cyclic voltammetry, X‐ray absorption spectroscopy (XAS) measurements, and comparison of salient bond metrics derived from X‐ray single‐crystal structural characterization. In combination, these data are consistent with a low‐valent vanadium ion in complexes2 and4 . This study represents the first example of a metathesis reaction between the P‐atom of [PCO]−and an alkylidyne ligand. -
ABSTRACT This work investigates effects of poly(
γ ‐butyrolactone) (Pγ BL) with different initiation and termination chain ends on five types of materials properties, including thermal stability, thermal transitions, thermal recyclability, hydrolytic degradation, and dynamic mechanical behavior. Four different chain‐end‐capped polymers with similar molecular weights, BnO‐[C(=O)(CH2)3O]n‐R, R = C(=O)Me, C(=O)CH=CH2, C(=O)Ph, and SiMe2CMe3, along with a series of uncapped polymers R′O‐[C(=O)(CH2)3O]n‐H (R′ = Bn, Ph2CHCH2) withM nranging from low (4.95 kg mol−1) to high (83.2 kg mol−1), have been synthesized. The termination chain end R showed a large effect on polymer decomposition temperature and hydrolytic degradation, relative to H. Overall, for those properties sensitive to the chain ends, chain‐end capping renders R‐protected linear Pγ BL behaving much like cyclic Pγ BL. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2018 ,56 , 2271–2279 -
Abstract The dialkyl malonate derived 1,3‐diphosphines R2C(CH2PPh2)2(R=
a , Me;b , Et;c ,n ‐Bu;d ,n ‐Dec;e , Bn;f ,p ‐tolCH2) are combined with (p ‐tol3P)2PtCl2ortrans ‐(p‐ tol3P)2Pt((C≡C)2H)2to give the chelatescis ‐(R2C(CH2PPh2)2)PtCl2(2 a –f , 94–69 %) orcis ‐(R2C(CH2PPh2)2)Pt((C≡C)2H)2(3 a –f , 97–54 %). Complexes3 a –d are also available from2 a –d and excess 1,3‐butadiyne in the presence of CuI (cat.) and excess HNEt2(87–65 %). Under similar conditions,2 and3 react to give the title compounds [(R2C(CH2PPh2)2)[Pt(C≡C)2]4(4 a –f ; 89–14 % (64 % avg)), from which ammonium salts such as the co‐product [H2NEt2]+Cl−are challenging to remove. Crystal structures of4 a ,b show skew rhombus as opposed to square Pt4geometries. The NMR and IR properties of4 a –f are similar to those of mono‐ or diplatinum model compounds. However, cyclic voltammetry gives only irreversible oxidations. As compared to mono‐platinum or Pt(C≡C)2Pt species, the UV‐visible spectra show much more intense and red‐shifted bands. Time dependent DFT calculations define the transitions and principal orbitals involved. Electrostatic potential surface maps reveal strongly negative Pt4C16cores that likely facilitate ammonium cation binding. Analogous electronic properties of Pt3C12and Pt5C20homologs and selected equilibria are explored computationally.