Blikstein, P
; Van_Aalst, J
; Kizito, R
; Brennan, K
(Ed.)
This study takes advantage of advances in Natural Language Processing (NLP) to build an idea detection model that can identify ideas grounded in students’ linguistic experiences. We designed adaptive, interactive dialogs for four explanation items using the NLP idea detection model and investigated whether they similarly support students from distinct language backgrounds. The curriculum, assessments, and scoring rubrics were informed by the Knowledge Integration (KI) pedagogy. We analyzed responses of 1,036 students of different language backgrounds taught by 10 teachers in five schools in the western United States. The adaptive dialog engages students from both monolingual English and multilingual backgrounds in incorporating additional relevant ideas into their explanations, resulting in a significant improvement in student responses from initial to revised explanations. The guidance supports students in both language groups to progress in integrating their scientific ideas.
more »
« less