Abstract Searching for Kagome magnets with novel magnetic and electronic properties has been attracting significant efforts recently. Here, the magnetic, electronic, and thermoelectric properties of Fe3Ge single crystals with Fe atoms forming a slightly distorted Kagome lattice are reported. It is shown that Fe3Ge exhibits a large anomalous Hall effect and anomalous Nernst effect. The observed anomalous transverse thermoelectric conductivity reaches ≈4.6 A m−1 K−1, which is larger than the conventional ferromagnets and most of the topological ferromagnets reported in literature. The first‐principles calculations suggest that these exceptional transport properties are dominated by the intrinsic mechanism, which highlights the significant contribution of the Berry curvature of massive Dirac gaps in the momentum space. Additionally, a topological Hall resistivity of 0.9 µΩ cm and a topological Nernst coefficient of 1.2 µV K−1are also observed, which are presumably ascribed to the Berry phase associated with the field‐induced non‐zero scalar spin chirality. These features highlight the synergic effects of the Berry phases in both momentum space and real space of Fe3Ge, which render it an excellent candidate for room‐temperature thermoelectric applications based on transverse transport.
more »
« less
Current-sensitive Hall effect in a chiral-orbital-current state
Abstract Chiral orbital currents (COC) underpin a novel colossal magnetoresistance in ferrimagnetic Mn3Si2Te6. Here we report the Hall effect in the COC state which exhibits the following unprecedented features: (1) A sharp, current-sensitive peak in the magnetic field dependence of the Hall resistivity, and (2) A current-sensitive scaling relation between the Hall conductivityσxyand the longitudinal conductivityσxx, namely,σxy∝σxxαwith α reaching up to 5, which is exceptionally large compared toα ≤ 2 typical of all solids. The novel Hall responses along with a current-sensitive carrier density and a large Hall angle of 15% point to a giant, current-sensitive Hall effect that is unique to the COC state. Here, we show that a magnetic field induced by the fully developed COC combines with the applied magnetic field to exert the greatly enhanced transverse force on charge carriers, which dictates the COC Hall responses.
more »
« less
- Award ID(s):
- 2204811
- PAR ID:
- 10510649
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present a catalog of clouds identified from the12CO (1–0) data of M83, which was observed using the Atacama Large Millimeter/submillimeter Array with a spatial resolution of ∼46 pc and a mass sensitivity of ∼104M⊙(3σ). The almost full-disk coverage and high sensitivity of the data allowed us to sample 5724 molecular clouds with a median mass of ∼1.9 × 105M⊙, which is comparable to the most frequently sampled mass of giant molecular clouds by surveys in the Milky Way (MW). About 60% of the total CO luminosity in M83's disk arises from clouds more massive than 106M⊙. Such massive clouds comprise 16% of the total clouds in number and tend to concentrate toward the arm, bar, and center, while smaller clouds are more prevalent in interarm regions. Most >106M⊙clouds have peak brightness temperaturesTpeakabove 2 K with the current resolution. Comparing the observed cloud properties with the scaling relations determined by P. M. Solomon et al. (1987, hereafter S87),Tpeak> 2 K clouds follow the relations, butTpeak< 2 K clouds, which are dominant in number, deviate significantly. Without considering the effect of beam dilution, the deviations would suggest modestly high virial parameters (medianαvir∼ 2.7) and low surface mass densities (median Σ ∼ 22M⊙pc−2) for the entire cloud samples, which are similar to values found for the MW clouds by T. S. Rice et al. (2016) and M.-A Miville-Deschênes et al. (2017). However, once beam dilution is taken into account, the observedαvirand Σ for a majority of the clouds (mostlyTpeak<2 K) can be potentially explained with intrinsic Σ of ∼100M⊙pc−2andαvirof ∼1, which are similar to the clouds of S87.more » « less
-
Abstract 2D van der Waals (vdW) magnets open landmark horizons in the development of innovative spintronic device architectures. However, their fabrication with large scale poses challenges due to high synthesis temperatures (>500 °C) and difficulties in integrating them with standard complementary metal‐oxide semiconductor (CMOS) technology on amorphous substrates such as silicon oxide (SiO2) and silicon nitride (SiNx). Here, a seeded growth technique for crystallizing CrTe2films on amorphous SiNx/Si and SiO2/Si substrates with a low thermal budget is presented. This fabrication process optimizes large‐scale, granular atomic layers on amorphous substrates, yielding a substantial coercivity of 11.5 kilo‐oersted, attributed to weak intergranular exchange coupling. Field‐driven Néel‐type stripe domain dynamics explain the amplified coercivity. Moreover, the granular CrTe2devices on Si wafers display significantly enhanced magnetoresistance, more than doubling that of single‐crystalline counterparts. Current‐assisted magnetization switching, enabled by a substantial spin–orbit torque with a large spin Hall angle (85) and spin Hall conductivity (1.02 × 107ℏ/2e Ω⁻¹ m⁻¹), is also demonstrated. These observations underscore the proficiency in manipulating crystallinity within integrated 2D magnetic films on Si wafers, paving the way for large‐scale batch manufacturing of practical magnetoelectronic and spintronic devices, heralding a new era of technological innovation.more » « less
-
Abstract Topological insulators (TI) and magnetic topological insulators (MTI) can apply highly efficient spin‐orbit torque (SOT) and manipulate the magnetization with their unique topological surface states (TSS) with ultrahigh efficiency. Here, efficient SOT switching of a hard MTI, V‐doped (Bi,Sb)2Te3(VBST), with a large coercive field that can prevent the influence of an external magnetic field, is demonstrated. A giant switched anomalous Hall resistance of 9.2 kΩ is realized, among the largest of all SOT systems, which makes the Hall channel a good readout and eliminates the need to fabricate complicated magnetic tunnel junction (MTJ) structures. The SOT switching current density can be reduced to 2.8 × 105 A cm−2, indicating its high efficiency. Moreover, as the Fermi level is moved away from the Dirac point by both gate and composition tuning, VBST exhibits a transition from edge‐state‐mediated to surface‐state‐mediated transport, thus enhancing the SOT effective field to (1.56 ± 0.12) × 10−6 T A−1 cm2and the interfacial charge‐to‐spin conversion efficiency to 3.9 ± 0.3 nm−1. The findings establish VBST as an extraordinary candidate for energy‐efficient magnetic memory devices.more » « less
-
Abstract Recent advances in numerical simulations of magnetically arrested accretion onto supermassive black holes have shed light on the formation and dynamics of magnetospheric current sheets near the black hole horizon. By considering the pair magnetizationσein the upstream region and the mass accretion rateṁ(in units of the Eddington mass accretion rate) as free parameters we estimate the strength of the magnetic field and develop analytical models, motivated by recent three-dimensional particle-in-cell simulations, to describe the populations of relativistic electrons and positrons (pairs) in the reconnection region.Applying our model to M87*, we numerically compute the non-thermal photon spectra for various values ofσe. We show that pairs that are accelerated up to the synchrotron radiation-limited energy while meandering across both sides of the current sheet, can produce MeV flares with luminosity of ∼ 1041 erg s-1— independent ofσe— for a black hole accreting atṁ=10-5. Pairs that are trapped in the transient current sheet can produce X-ray counterparts to the MeV flares, lasting about a day for current sheets with length of a few gravitational radii. We also show that the upstream plasma can be enriched due to photon-photon pair creation, and derive a new equilibrium magnetization ofσe∼ 103-104forṁ= 10-6- 10-5. Additionally, we explore the potential of magnetospheric current sheets to accelerate protons to ultra-high energies, finding that while acceleration to such energies is limited by various loss mechanisms, such as synchrotron and photopion losses from the non-thermal emission from pairs, maximal proton energies in the range of a few EeV are attainable in magnetospheric sheets forming around supermassive sub-Eddington accreting black holes.more » « less
An official website of the United States government

