skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: The role of magnetospheric current sheets in pair enrichment and ultra-high energy proton acceleration in M87*
Abstract Recent advances in numerical simulations of magnetically arrested accretion onto supermassive black holes have shed light on the formation and dynamics of magnetospheric current sheets near the black hole horizon. By considering the pair magnetizationσein the upstream region and the mass accretion rateṁ(in units of the Eddington mass accretion rate) as free parameters we estimate the strength of the magnetic field and develop analytical models, motivated by recent three-dimensional particle-in-cell simulations, to describe the populations of relativistic electrons and positrons (pairs) in the reconnection region.Applying our model to M87*, we numerically compute the non-thermal photon spectra for various values ofσe. We show that pairs that are accelerated up to the synchrotron radiation-limited energy while meandering across both sides of the current sheet, can produce MeV flares with luminosity of ∼ 1041 erg s-1— independent ofσe— for a black hole accreting atṁ=10-5. Pairs that are trapped in the transient current sheet can produce X-ray counterparts to the MeV flares, lasting about a day for current sheets with length of a few gravitational radii. We also show that the upstream plasma can be enriched due to photon-photon pair creation, and derive a new equilibrium magnetization ofσe∼ 103-104forṁ= 10-6- 10-5. Additionally, we explore the potential of magnetospheric current sheets to accelerate protons to ultra-high energies, finding that while acceleration to such energies is limited by various loss mechanisms, such as synchrotron and photopion losses from the non-thermal emission from pairs, maximal proton energies in the range of a few EeV are attainable in magnetospheric sheets forming around supermassive sub-Eddington accreting black holes.  more » « less
Award ID(s):
2108201 2308090 2107806 2107802
PAR ID:
10561342
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
JCAP
Date Published:
Journal Name:
Journal of Cosmology and Astroparticle Physics
Volume:
2024
Issue:
12
ISSN:
1475-7516
Page Range / eLocation ID:
009
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A ubiquitous feature of accreting black hole systems is their hard X-ray emission which is thought to be produced through Comptonization of soft photons by electrons and positrons in the vicinity of the black hole, in a region with optical depth of order unity. The origin and composition of this Comptonizing region, known as the corona, is a matter open for debate. In this paper we investigate the role of relativistic protons accelerated in black-hole magnetospheric current sheets for the pair enrichment and neutrino emission of AGN coronae. Our model has two free parameters, namely the proton plasma magnetizationσp, which controls the peak energy of the neutrino spectrum, and the Eddington ratio λX,Edd(defined as the ratio between X-ray luminosityLXand Eddington luminosityLEdd), which controls the amount of energy transferred to secondary particles. For sources with λX,Edd≳ λEdd,crit(where λEdd,crit∼ 10-1forσp= 105or ∼ 10-2forσp= 107), proton-photon interactions andγγannihilation produce enough secondary pairs to achieve Thomson optical depthsτT∼ 0.1-10. In the opposite case of λX,Edd≲ λEdd,crit, the coronal pairs cannot originate only from hadronic interactions. Additionally, we find that the neutrino luminosity scales asL2X/LEddfor λX,Edd≲ λEdd,crit, while it is proportional toLXfor higher λX,Eddvalues. We apply our model to four Seyfert galaxies, including NGC 1068, and discuss our results in light of recent IceCube observations. 
    more » « less
  2. Abstract Magnetic reconnection is ubiquitous in astrophysical systems, and in many such systems the plasma suffers from significant cooling due to synchrotron radiation. We study relativistic magnetic reconnection in the presence of strong synchrotron cooling, where the ambient magnetization,σ, is high and the magnetic compactness,ℓB, of the system is of order unity. In this regime,e±pair production from synchrotron photons is inevitable, and this process can regulate the magnetizationσsurrounding the current sheet. We investigate this self-regulation analytically and find a self-consistent steady state for a given magnetic compactness of the system and initial magnetization. This result helps estimate the self-consistent upstream magnetization in systems where plasma density is poorly constrained, and can be useful for a variety of astrophysical systems. As illustrative examples, we apply it to study the properties of reconnecting current sheets near the supermassive black hole of M87, as well as the equatorial current sheet outside the light cylinder of the Crab pulsar. 
    more » « less
  3. Abstract We present the results of 3D particle-in-cell simulations that explore relativistic magnetic reconnection in pair plasma with strong synchrotron cooling and a small mass fraction of nonradiating ions. Our results demonstrate that the structure of the current sheet is highly sensitive to the dynamic efficiency of radiative cooling. Specifically, stronger cooling leads to more significant compression of the plasma and magnetic field within the plasmoids. We demonstrate that ions can be efficiently accelerated to energies exceeding the plasma magnetization parameter, ≫σ, and form a hard power-law energy distribution,fi∝γ−1. This conclusion implies a highly efficient proton acceleration in the magnetospheres of young pulsars. Conversely, the energies of pairs are limited to eitherσin the strong cooling regime or the radiation burnoff limit,γsyn, when cooling is weak. We find that the high-energy radiation from pairs above the synchrotron burnoff limit,εc≈ 16 MeV, is only efficiently produced in the strong cooling regime,γsyn<σ. In this regime, we find that the spectral cutoff scales asεcut≈εc(σ/γsyn) and the highest energy photons are beamed along the direction of the upstream magnetic field, consistent with the phenomenological models of gamma-ray emission from young pulsars. Furthermore, our results place constraints on the reconnection-driven models of gamma-ray flares in the Crab Nebula. 
    more » « less
  4. Abstract We present the results of 3D particle-in-cell simulations that explore relativistic magnetic reconnection in pair plasma with strong synchrotron cooling and a small mass fraction of nonradiating ions. Our results demonstrate that the structure of the current sheet is highly sensitive to the dynamic efficiency of radiative cooling. Specifically, stronger cooling leads to more significant compression of the plasma and magnetic field within the plasmoids. We demonstrate that ions can be efficiently accelerated to energies exceeding the plasma magnetization parameter, ≫σ, and form a hard power-law energy distribution,fi∝γ−1. This conclusion implies a highly efficient proton acceleration in the magnetospheres of young pulsars. Conversely, the energies of pairs are limited to eitherσin the strong cooling regime or the radiation burnoff limit,γsyn, when cooling is weak. We find that the high-energy radiation from pairs above the synchrotron burnoff limit,εc≈ 16 MeV, is only efficiently produced in the strong cooling regime,γsyn<σ. In this regime, we find that the spectral cutoff scales asεcut≈εc(σ/γsyn) and the highest energy photons are beamed along the direction of the upstream magnetic field, consistent with the phenomenological models of gamma-ray emission from young pulsars. Furthermore, our results place constraints on the reconnection-driven models of gamma-ray flares in the Crab Nebula. 
    more » « less
  5. Context.The detection of supermassive black holes (SMBHs) in high-redshift luminous quasars may require a phase of rapid accretion, and as a precondition, substantial gas influx toward seed black holes (BHs) from kiloparsec or parsec scales. Our previous research demonstrated the plausibility of such gas supply for BH seeds within star-forming giant molecular clouds (GMCs) with high surface density (∼104 M pc−2), facilitating “hyper-Eddington” accretion via efficient feeding by dense clumps, which are driven by turbulence and stellar feedback. Aims.This article presents an investigation of the impacts of feedback from accreting BHs on this process, including radiation, mechanical jets, and highly relativistic cosmic rays. Methods.We ran a suite of numerical simulations to explore diverse parameter spaces of BH feedback, including the subgrid accretion model, feedback energy efficiency, mass loading factor, and initial metallicity. Results.Using radiative feedback models inferred from the slim disk, we find that hyper-Eddington accretion is still achievable, yielding BH bolometric luminosities of as high as 1041 − 1044 erg/s, depending on the GMC properties and specific feedback model assumed. We find that the maximum possible mass growth of seed BHs (ΔMmaxBH) is regulated by the momentum-deposition rate from BH feedback,ṗfeedback/(ṀBHc), which leads to an analytic scaling that agrees well with simulations. This scenario predicts the rapid formation of ∼104Mintermediate-massive BHs (IMBHs) from stellar-mass BHs within ∼1 Myr. Furthermore, we examine the impacts of subgrid accretion models and how BH feedback may influence star formation within these cloud complexes. 
    more » « less