skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Detailed numerical investigation of the drop aerobreakup in the bag breakup regime
Aerobreakup of drops is a fundamental two-phase flow problem that is essential to many spray applications. A parametric numerical study was performed by varying the gas stream velocity, focusing on the regime of moderate Weber numbers, in which the drop deforms to a forward bag. When the bag is unstable, it inflates and disintegrates into small droplets. Detailed numerical simulations were conducted using the volume-of-fluid method on an adaptive octree mesh to investigate the aerobreakup dynamics. Grid-refinement studies show that converged three-dimensional simulation results for drop deformation and bag formation are achieved by the refinement level equivalent to 512 cells across the initial drop diameter. To resolve the thin liquid sheet when the bag inflates, the mesh is refined further to 2048 cells across the initial drop diameter. The simulation results for the drop length and radius were validated against previous experiments, and good agreement was achieved. The high-resolution results of drop morphological evolution were used to identify the different phases in the aerobreakup process, and to characterize the distinct flow features and dominant mechanisms in each phase. In the early time, the drop deformation and velocity are independent of the Weber number, and a new internal-flow deformation model, which respects this asymptotic limit, has been developed. The pressure and velocity fields around the drop were shown to better understand the internal flow and interfacial instability that dictate the drop deformation. Finally, the impact of drop deformation on the drop dynamics was discussed.  more » « less
Award ID(s):
2321396
PAR ID:
10510656
Author(s) / Creator(s):
;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
972
ISSN:
0022-1120
Page Range / eLocation ID:
A28
Subject(s) / Keyword(s):
drops, aerosols/atomization, multiphase flow
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Aerobreakup of liquid drops are important to many droplet applications, such as fuel injection. When a liquid drop is subjected to a gas stream of high velocity, the drop can deform and break into small droplets. The drop aerobreakup is controlled by multiple dimensionless parameters. The Weber number (We) has been commonly used to characterize the different breakup regimes. While the effects of Weber and Ohnesorge numbers on the aerobreakup of a drop in unbounded domain have been extensively studied, the effect of the Reynolds number (Re) based on gas properties are less understood and will be investigated by 2D axis-symmetric and 3D detailed numerical simulations in the present paper. Attention will be focused on the moderate We regime, where the drop mostly breaks in the bag mode. In many previous studies for millimeter drops, Re is too large to be relevant. However, for applications where drops are small and the relative velocity is high, Re can be quite small when the drop breaks. Parametric simulations of Re and We are performed to systematically investigate the effect of Re on the drop aerobreakup dynamics. The simulations are performed using the Basilisk solver, where the mass-momentum consistent VOF method is used to capture the interfacial dynamics on an adaptive mesh. The reduced Re is found to induce significant changes in the drop acceleration, deformation, bag morphology, and the bag breakup dynamics, which in turn lead to significant variation in the size and spatial distributions of the children droplets formed. 
    more » « less
  2. Accurate prediction of the dynamics and deformation of freely moving drops is crucial for numerous droplet applications. When the Weber number is finite but below a critical value, the drop deviates from its spherical shape and deforms as it is accelerated by the gas stream. Since aerodynamic drag on the drop depends on its shape oscillation, accurately modeling the drop shape evolution is essential for predicting the drop's velocity and position. In this study, 2D axisymmetric interface-resolved simulations were performed to provide a comprehensive dataset for developing a data-driven model. Parametric simulations were conducted by systematically varying the drop diameter and free-stream velocity, achieving wide ranges of Weber and Reynolds numbers. The instantaneous drop shapes obtained in simulations are characterized by spherical harmonics. Temporal data of the drag and modal coefficients are collected from the simulation data to train a {Nonlinear Auto-Regressive models with eXogenous inputs} (NARX) neural network model. The overall model consists of two multi-layer perceptron networks, which predict the modal coefficients and the drop drag, respectively. The drop shape can be reconstructed with the predicted modal coefficients. The model predictions are validated against the simulation data in the testing set, showing excellent agreement for the evolutions of both the drop shape and drag. 
    more » « less
  3. Aerodynamic breakup of vaporizing drops is commonly seen in many spray applications. While it is well known that vaporization can modulate interfacial instabilities, the impact of vaporization on drop aerobreakup is poorly understood. Detailed interface-resolved simulations were performed to systematically study the effect of vaporization, characterized by the Stefan number, on the drop breakup and acceleration for different Weber numbers and density ratios. It is observed that the resulting asymmetric vaporization rates and strengths of Stefan flow on the windward and leeward sides of the drop hinder bag development and prevent drop breakup. The critical Weber number thus generally increases with the Stefan number. The modulation of the boundary layer also contributes to a significant increase of drag coefficient. Numerical experiments were performed to affirm that the drop volume reduction plays a negligible role and the Stefan flow is the dominant reason for the breakup suppression and drag enhancement observed. 
    more » « less
  4. Adaptive mesh refinement (AMR) has been introduced as an attractive means of significantly improving computational efficiency for a variety of two-phase flow problems. In the current study, the benefits of AMR are investigated for the case of liquid jet atomization. The evaluation consists of a systematic analysis of results from the interDymFoam (AMR octree) and interFoam (static octree) codes, both of which form part of the family of solvers distributed within the open source OpenFOAM C++ Toolbox. The two-phase flow treatment is based on an algebraic VoF methodology. As a preliminary set of exercises, cases for pure advection, stationary wave dynamics, and Rayleigh-Plateau breakup of a cylindrical liquid element are considered. The results from these exercises confirm the expected trend of higher numerical efficiency in AMR, while still retaining essentially the same level of accuracy as the fixed embedded mesh solutions. However, for the liquid jet atomization, the behavior is a bit more complicated. First, at lower levels of Weber number, we observe a similar trend as the preliminary exercises. At higher Weber numbers, due to a noticeable increase in interfacial area density, substantial inhomogeneities are formed in the underlying grids yielding slower solutions of pressure Poisson equation, thereby potentially offsetting the benefits of this approach. In fact, at much higher Weber numbers, for instance, those pertaining to Diesel injection, the results suggest that a fixed embedded mesh would provide better computational efficiency. However, this conclusion depends on the target lowest level of numerical resolution, Δxmin. The current work shows how the efficiency of AMR suffers from increasing interfacial area density, and how this can be alleviated via a decrease in Δxmin. Various test cases are presented to illustrate this effect. 
    more » « less
  5. We investigate the modes of deformation of an initially spherical bubble immersed in a homogeneous and isotropic turbulent background flow. We perform direct numerical simulations of the two-phase incompressible Navier–Stokes equations, considering a low-density bubble in the high-density turbulent flow at various Weber numbers (the ratio of turbulent and surface tension forces) using the air–water density ratio. We discuss a theoretical framework for the bubble deformation in a turbulent flow using a spherical harmonic decomposition. We propose, for each mode of bubble deformation, a forcing term given by the statistics of velocity and pressure fluctuations, evaluated on a sphere of the same radius. This approach formally relates the bubble deformation and the background turbulent velocity fluctuations, in the limit of small deformations. The growth of the total surface deformation and of each individual mode is computed from the direct numerical simulations using an appropriate Voronoi decomposition of the bubble surface. We show that two successive temporal regimes occur: the first regime corresponds to deformations driven only by inertial forces, with the interface deformation growing linearly in time, in agreement with the model predictions, whereas the second regime results from a balance between inertial forces and surface tension. The transition time between the two regimes is given by the period of the first Rayleigh mode of bubble oscillation. We discuss how our approach can be used to relate the bubble lifetime to the turbulence statistics and eventually show that at high Weber numbers, bubble lifetime can be deduced from the statistics of turbulent fluctuations at the bubble scale. 
    more » « less