Efficiency is essential to support ever-growing datasets, especially for Deep Learning (DL) systems. DL frameworks have traditionally embraced deferred execution-style DL code—supporting symbolic, graph-based Deep Neural Network (DNN) computation. While scalable, such development is error-prone, non-intuitive, and difficult to debug. Consequently, more natural, imperative DL frameworks encouraging eager execution have emerged but at the expense of run-time performance. Though hybrid approaches aim for the "best of both worlds," using them effectively requires subtle considerations. Our key insight is that, while DL programs typically execute sequentially, hybridizing imperative DL code resembles parallelizing sequential code in traditional systems. Inspired by this, we present an automated refactoring approach that assists developers in determining which otherwise eagerly-executed imperative DL functions could be effectively and efficiently executed as graphs. The approach features novel static imperative tensor and side-effect analyses for Python. Due to its inherent dynamism, analyzing Python may be unsound; however, the conservative approach leverages a speculative (keyword-based) analysis for resolving difficult cases that informs developers of any assumptions made. The approach is: (i) implemented as a plug-in to the PyDev Eclipse IDE that integrates the WALA Ariadne analysis framework and (ii) evaluated on nineteen DL projects consisting of 132 KLOC. The results show that 326 of 766 candidate functions (42.56%) were refactorable, and an average relative speedup of 2.16 on performance tests was observed with negligible differences in model accuracy. The results indicate that the approach is useful in optimizing imperative DL code to its full potential.
more »
« less
Towards Safe Automated Refactoring of Imperative Deep Learning Programs to Graph Execution
Efficiency is essential to support responsiveness w.r.t. ever-growing datasets, especially for Deep Learning (DL) systems. DL frameworks have traditionally embraced deferred execution-style DL code-supporting symbolic, graph-based Deep Neural Network (DNN) computation. While scalable, such development is error-prone, non-intuitive, and difficult to debug. Consequently, more natural, imperative DL frameworks encouraging eager execution have emerged at the expense of run-time performance. Though hybrid approaches aim for the “best of both worlds,” using them effectively requires subtle considerations to make code amenable to safe, accurate, and efficient graph execution. We present our ongoing work on automated refactoring that assists developers in specifying whether and how their otherwise eagerly-executed imperative DL code could be reliably and efficiently executed as graphs while preserving semantics. The approach, based on a novel imperative tensor analysis, will automatically determine when it is safe and potentially advantageous to migrate imperative DL code to graph execution and modify decorator parameters or eagerly executing code already running as graphs. The approach is being implemented as a PyDev Eclipse IDE plug-in and uses the WALA Ariadne analysis framework. We discuss our ongoing work towards optimizing imperative DL code to its full potential.
more »
« less
- Award ID(s):
- 2200343
- PAR ID:
- 10510685
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE/ACM International Conference on Automated Software Engineering
- ISSN:
- 2643-1572
- ISBN:
- 979-8-3503-2996-4
- Page Range / eLocation ID:
- 1800 to 1802
- Format(s):
- Medium: X
- Location:
- Luxembourg, Luxembourg
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Boronat, Artur; Fraser, Gordon (Ed.)Abstract Efficiency is essential to support responsiveness w.r.t. ever-growing datasets, especially for Deep Learning (DL) systems. DL frameworks have traditionally embraceddeferredexecution-style DL code—supporting symbolic, graph-based Deep Neural Network (DNN) computation. While scalable, such development is error-prone, non-intuitive, and difficult to debug. Consequently, more natural, imperative DL frameworks encouragingeagerexecution have emerged but at the expense of run-time performance. Though hybrid approaches aim for the “best of both worlds,” using them effectively requires subtle considerations to make code amenable to safe, accurate, and efficient graph execution—avoiding performance bottlenecks and semantically inequivalent results. We discuss the engineering aspects of a refactoring tool that automatically determines when it is safe and potentially advantageous to migrate imperative DL code to graph execution and vice-versa.more » « less
-
Efficiency is essential to support responsiveness w.r.t. ever-growing datasets, especially for Deep Learning (DL) systems. DL frameworks have traditionally embraced deferred execution-style DL code that supports symbolic, graph-based Deep Neural Network (DNN) computation. While scalable, such development tends to produce DL code that is error-prone, non-intuitive, and difficult to debug. Consequently, more natural, less error-prone imperative DL frameworks encouraging eager execution have emerged but at the expense of run-time performance. While hybrid approaches aim for the "best of both worlds," the challenges in applying them in the real world are largely unknown. We conduct a data-driven analysis of challenges---and resultant bugs---involved in writing reliable yet performant imperative DL code by studying 250 open-source projects, consisting of 19.7 MLOC, along with 470 and 446 manually examined code patches and bug reports, respectively. The results indicate that hybridization: (i) is prone to API misuse, (ii) can result in performance degradation---the opposite of its intention, and (iii) has limited application due to execution mode incompatibility. We put forth several recommendations, best practices, and anti-patterns for effectively hybridizing imperative DL code, potentially benefiting DL practitioners, API designers, tool developers, and educators.more » « less
-
{"Abstract":["Efficiency is essential to support responsiveness w.r.t. ever-growing datasets, especially for Deep Learning (DL) systems. DL frameworks have traditionally embraced deferred execution-style DL code that supports symbolic, graph-based Deep Neural Network (DNN) computation. While scalable, such development tends to produce DL code that is error-prone, non-intuitive, and difficult to debug. Consequently, more natural, less error-prone imperative DL frameworks encouraging eager execution have emerged but at the expense of run-time performance. While hybrid approaches aim for the "best of both worlds," the challenges in applying them in the real world are largely unknown. We conduct a data-driven analysis of challenges\u2014and resultant bugs\u2014involved in writing reliable yet performant imperative DL code by studying 250 open-source projects, consisting of 19.7 MLOC, along with 470 and 446 manually examined code patches and bug reports, respectively. The results indicate that hybridization: (i) is prone to API misuse, (ii) can result in performance degradation\u2014the opposite of its intention, and (iii) has limited application due to execution mode incompatibility. We put forth several recommendations, best practices, and anti-patterns for effectively hybridizing imperative DL code, potentially benefiting DL practitioners, API designers, tool developers, and educators.<\/p>"],"Other":["Support for this project was provided by PSC-CUNY Award #638010051, jointly funded by The Professional Staff Congress and The City University of New York."]}more » « less
-
Aldrich, Jonathan; Salvaneschi, Guido (Ed.)Tensor processing infrastructures such as deep learning frameworks and specialized hardware accelerators have revolutionized how computationally intensive code from domains such as deep learning and image processing is executed and optimized. These infrastructures provide powerful and expressive abstractions while ensuring high performance. However, to utilize them, code must be written specifically using the APIs / ISAs of such software frameworks or hardware accelerators. Importantly, given the fast pace of innovation in these domains, code written today quickly becomes legacy as new frameworks and accelerators are developed, and migrating such legacy code manually is a considerable effort. To enable developers in leveraging such DSLs while preserving their current programming paradigm, we present Tenspiler, a verified-lifting-based compiler that uses program synthesis to translate sequential programs written in general-purpose programming languages (e.g., C++ or Python code that does not leverage any specialized framework or accelerator) into tensor operations. Central to Tenspiler is our carefully crafted yet simple intermediate language, named TensIR, that expresses tensor operations. TensIR enables efficient lifting, verification, and code generation. Unlike classical pattern-matching-based compilers, Tenspiler uses program synthesis to translate input code into TensIR, which is then compiled to the target API / ISA. Currently, Tenspiler already supports six DSLs, spanning a broad spectrum of software and hardware environments. Furthermore, we show that new backends can be easily supported by Tenspiler by adding simple pattern-matching rules for TensIR. Using 10 real-world code benchmark suites, our experimental evaluation shows that by translating code to be executed on 6 different software frameworks and hardware devices, Tenspiler offers on average 105× kernel and 9.65× end-to-end execution time improvement over the fully-optimized sequential implementation of the same benchmarks.more » « less
An official website of the United States government

