Abstract Integrating single-cell multi-omics data is a challenging task that has led to new insights into complex cellular systems. Various computational methods have been proposed to effectively integrate these rapidly accumulating datasets, including deep learning. However, despite the proven success of deep learning in integrating multi-omics data and its better performance over classical computational methods, there has been no systematic study of its application to single-cell multi-omics data integration. To fill this gap, we conducted a literature review to explore the use of multimodal deep learning techniques in single-cell multi-omics data integration, taking into account recent studies from multiple perspectives. Specifically, we first summarized different modalities found in single-cell multi-omics data. We then reviewed current deep learning techniques for processing multimodal data and categorized deep learning-based integration methods for single-cell multi-omics data according to data modality, deep learning architecture, fusion strategy, key tasks and downstream analysis. Finally, we provided insights into using these deep learning models to integrate multi-omics data and better understand single-cell biological mechanisms.
more »
« less
This content will become publicly available on December 1, 2025
Orthogonal multimodality integration and clustering in single-cell data
Abstract Multimodal integration combines information from different sources or modalities to gain a more comprehensive understanding of a phenomenon. The challenges in multi-omics data analysis lie in the complexity, high dimensionality, and heterogeneity of the data, which demands sophisticated computational tools and visualization methods for proper interpretation and visualization of multi-omics data. In this paper, we propose a novel method, termed Orthogonal Multimodality Integration and Clustering (OMIC), for analyzing CITE-seq. Our approach enables researchers to integrate multiple sources of information while accounting for the dependence among them. We demonstrate the effectiveness of our approach using CITE-seq data sets for cell clustering. Our results show that our approach outperforms existing methods in terms of accuracy, computational efficiency, and interpretability. We conclude that our proposed OMIC method provides a powerful tool for multimodal data analysis that greatly improves the feasibility and reliability of integrated data.
more »
« less
- PAR ID:
- 10510779
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- BMC Bioinformatics
- Volume:
- 25
- Issue:
- 1
- ISSN:
- 1471-2105
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In recent years, the integration of single‐cell multi‐omics data has provided a more comprehensive understanding of cell functions and internal regulatory mechanisms from a non‐single omics perspective, but it still suffers many challenges, such as omics‐variance, sparsity, cell heterogeneity, and confounding factors. As it is known, the cell cycle is regarded as a confounder when analyzing other factors in single‐cell RNA‐seq data, but it is not clear how it will work on the integrated single‐cell multi‐omics data. Here, a cell cycle‐aware network (CCAN) is developed to remove cell cycle effects from the integrated single‐cell multi‐omics data while keeping the cell type‐specific variations. This is the first computational model to study the cell‐cycle effects in the integration of single‐cell multi‐omics data. Validations on several benchmark datasets show the outstanding performance of CCAN in a variety of downstream analyses and applications, including removing cell cycle effects and batch effects of scRNA‐seq datasets from different protocols, integrating paired and unpaired scRNA‐seq and scATAC‐seq data, accurately transferring cell type labels from scRNA‐seq to scATAC‐seq data, and characterizing the differentiation process from hematopoietic stem cells to different lineages in the integration of differentiation data.more » « less
-
Abstract BackgroundThe recent development of high-throughput sequencing has created a large collection of multi-omics data, which enables researchers to better investigate cancer molecular profiles and cancer taxonomy based on molecular subtypes. Integrating multi-omics data has been proven to be effective for building more precise classification models. Most current multi-omics integrative models use either an early fusion in the form of concatenation or late fusion with a separate feature extractor for each omic, which are mainly based on deep neural networks. Due to the nature of biological systems, graphs are a better structural representation of bio-medical data. Although few graph neural network (GNN) based multi-omics integrative methods have been proposed, they suffer from three common disadvantages. One is most of them use only one type of connection, either inter-omics or intra-omic connection; second, they only consider one kind of GNN layer, either graph convolution network (GCN) or graph attention network (GAT); and third, most of these methods have not been tested on a more complex classification task, such as cancer molecular subtypes. ResultsIn this study, we propose a novel end-to-end multi-omics GNN framework for accurate and robust cancer subtype classification. The proposed model utilizes multi-omics data in the form of heterogeneous multi-layer graphs, which combine both inter-omics and intra-omic connections from established biological knowledge. The proposed model incorporates learned graph features and global genome features for accurate classification. We tested the proposed model on the Cancer Genome Atlas (TCGA) Pan-cancer dataset and TCGA breast invasive carcinoma (BRCA) dataset for molecular subtype and cancer subtype classification, respectively. The proposed model shows superior performance compared to four current state-of-the-art baseline models in terms of accuracy, F1 score, precision, and recall. The comparative analysis of GAT-based models and GCN-based models reveals that GAT-based models are preferred for smaller graphs with less information and GCN-based models are preferred for larger graphs with extra information.more » « less
-
Abstract Multimodal single-cell sequencing technologies provide unprecedented information on cellular heterogeneity from multiple layers of genomic readouts. However, joint analysis of two modalities without properly handling the noise often leads to overfitting of one modality by the other and worse clustering results than vanilla single-modality analysis. How to efficiently utilize the extra information from single cell multi-omics to delineate cell states and identify meaningful signal remains as a significant computational challenge. In this work, we propose a deep learning framework, named SAILERX, for efficient, robust, and flexible analysis of multi-modal single-cell data. SAILERX consists of a variational autoencoder with invariant representation learning to correct technical noises from sequencing process, and a multimodal data alignment mechanism to integrate information from different modalities. Instead of performing hard alignment by projecting both modalities to a shared latent space, SAILERX encourages the local structures of two modalities measured by pairwise similarities to be similar. This strategy is more robust against overfitting of noises, which facilitates various downstream analysis such as clustering, imputation, and marker gene detection. Furthermore, the invariant representation learning part enables SAILERX to perform integrative analysis on both multi- and single-modal datasets, making it an applicable and scalable tool for more general scenarios.more » « less
-
Abstract Brassinosteroids (BRs) are plant steroid hormones that regulate cell division and stress response. Here we use a systems biology approach to integrate multi-omic datasets and unravel the molecular signaling events of BR response inArabidopsis. We profile the levels of 26,669 transcripts, 9,533 protein groups, and 26,617 phosphorylation sites fromArabidopsisseedlings treated with brassinolide (BL) for six different lengths of time. We then construct a network inference pipeline called Spatiotemporal Clustering and Inference of Omics Networks (SC-ION) to integrate these data. We use our network predictions to identify putative phosphorylation sites on BES1 and experimentally validate their importance. Additionally, we identify BRONTOSAURUS (BRON) as a transcription factor that regulates cell division, and we show thatBRONexpression is modulated by BR-responsive kinases and transcription factors. This work demonstrates the power of integrative network analysis applied to multi-omic data and provides fundamental insights into the molecular signaling events occurring during BR response.more » « less
An official website of the United States government
