skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: A Cell Cycle‐Aware Network for Data Integration and Label Transferring of Single‐Cell RNA‐Seq and ATAC‐Seq
Abstract

In recent years, the integration of single‐cell multi‐omics data has provided a more comprehensive understanding of cell functions and internal regulatory mechanisms from a non‐single omics perspective, but it still suffers many challenges, such as omics‐variance, sparsity, cell heterogeneity, and confounding factors. As it is known, the cell cycle is regarded as a confounder when analyzing other factors in single‐cell RNA‐seq data, but it is not clear how it will work on the integrated single‐cell multi‐omics data. Here, a cell cycle‐aware network (CCAN) is developed to remove cell cycle effects from the integrated single‐cell multi‐omics data while keeping the cell type‐specific variations. This is the first computational model to study the cell‐cycle effects in the integration of single‐cell multi‐omics data. Validations on several benchmark datasets show the outstanding performance of CCAN in a variety of downstream analyses and applications, including removing cell cycle effects and batch effects of scRNA‐seq datasets from different protocols, integrating paired and unpaired scRNA‐seq and scATAC‐seq data, accurately transferring cell type labels from scRNA‐seq to scATAC‐seq data, and characterizing the differentiation process from hematopoietic stem cells to different lineages in the integration of differentiation data.

 
more » « less
PAR ID:
10515668
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Volume:
11
Issue:
31
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Benchmarking single-cell RNA-seq (scRNA-seq) and single-cell Assay for Transposase-Accessible Chromatin using sequencing (scATAC-seq) computational tools demands simulators to generate realistic sequencing reads. However, none of the few read simulators aim to mimic real data. To fill this gap, we introduce scReadSim, a single-cell RNA-seq and ATAC-seq read simulator that allows user-specified ground truths and generates synthetic sequencing reads (in a FASTQ or BAM file) by mimicking real data. At both read-sequence and read-count levels, scReadSim mimics real scRNA-seq and scATAC-seq data. Moreover, scReadSim provides ground truths, including unique molecular identifier (UMI) counts for scRNA-seq and open chromatin regions for scATAC-seq. In particular, scReadSim allows users to design cell-type-specific ground-truth open chromatin regions for scATAC-seq data generation. In benchmark applications of scReadSim, we show that UMI-tools achieves the top accuracy in scRNA-seq UMI deduplication, and HMMRATAC and MACS3 achieve the top performance in scATAC-seq peak calling.

     
    more » « less
  2. Abstract

    It is a challenging task to integrate scRNA-seq and scATAC-seq data obtained from different batches. Existing methods tend to use a pre-defined gene activity matrix to convert the scATAC-seq data into scRNA-seq data. The pre-defined gene activity matrix is often of low quality and does not reflect the dataset-specific relationship between the two data modalities. We propose scDART, a deep learning framework that integrates scRNA-seq and scATAC-seq data and learns cross-modalities relationships simultaneously. Specifically, the design of scDART allows it to preserve cell trajectories in continuous cell populations and can be applied to trajectory inference on integrated data.

     
    more » « less
  3. Abstract

    Numerous single‐cell transcriptomic datasets from identical tissues or cell lines are generated from different laboratories or single‐cell RNA sequencing (scRNA‐seq) protocols. The denoising of these datasets to eliminate batch effects is crucial for data integration, ensuring accurate interpretation and comprehensive analysis of biological questions. Although many scRNA‐seq data integration methods exist, most are inefficient and/or not conducive to downstream analysis. Here, DeepBID, a novel deep learning‐based method for batch effect correction, non‐linear dimensionality reduction, embedding, and cell clustering concurrently, is introduced. DeepBID utilizes a negative binomial‐based autoencoder with dual Kullback–Leibler divergence loss functions, aligning cell points from different batches within a consistent low‐dimensional latent space and progressively mitigating batch effects through iterative clustering. Extensive validation on multiple‐batch scRNA‐seq datasets demonstrates that DeepBID surpasses existing tools in removing batch effects and achieving superior clustering accuracy. When integrating multiple scRNA‐seq datasets from patients with Alzheimer's disease, DeepBID significantly improves cell clustering, effectively annotating unidentified cells, and detecting cell‐specific differentially expressed genes.

     
    more » « less
  4. null (Ed.)
    Abstract Motivation Single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) provides new opportunities to dissect epigenomic heterogeneity and elucidate transcriptional regulatory mechanisms. However, computational modeling of scATAC-seq data is challenging due to its high dimension, extreme sparsity, complex dependencies and high sensitivity to confounding factors from various sources. Results Here, we propose a new deep generative model framework, named SAILER, for analyzing scATAC-seq data. SAILER aims to learn a low-dimensional nonlinear latent representation of each cell that defines its intrinsic chromatin state, invariant to extrinsic confounding factors like read depth and batch effects. SAILER adopts the conventional encoder-decoder framework to learn the latent representation but imposes additional constraints to ensure the independence of the learned representations from the confounding factors. Experimental results on both simulated and real scATAC-seq datasets demonstrate that SAILER learns better and biologically more meaningful representations of cells than other methods. Its noise-free cell embeddings bring in significant benefits in downstream analyses: clustering and imputation based on SAILER result in 6.9% and 18.5% improvements over existing methods, respectively. Moreover, because no matrix factorization is involved, SAILER can easily scale to process millions of cells. We implemented SAILER into a software package, freely available to all for large-scale scATAC-seq data analysis. Availability and implementation The software is publicly available at https://github.com/uci-cbcl/SAILER. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  5. Abstract

    Large-scale scRNA-seq studies typically generate data in batches, which often induce nontrivial batch effects that need to be corrected. Given the global efforts for building cell atlases and the increasing number of annotated scRNA-seq datasets accumulated, we propose a supervised strategy for scRNA-seq data integration called SIDA (SupervisedIntegration usingDomainAdaptation), which uses the cell type annotations to guide the integration of diverse batches. The supervised strategy is based on domain adaptation that was initially proposed in the computer vision field. We demonstrate that SIDA is able to generate comprehensive reference datasets that lead to improved accuracy in automated cell type mapping analyses.

     
    more » « less