Abstract Benchmarking single-cell RNA-seq (scRNA-seq) and single-cell Assay for Transposase-Accessible Chromatin using sequencing (scATAC-seq) computational tools demands simulators to generate realistic sequencing reads. However, none of the few read simulators aim to mimic real data. To fill this gap, we introduce scReadSim, a single-cell RNA-seq and ATAC-seq read simulator that allows user-specified ground truths and generates synthetic sequencing reads (in a FASTQ or BAM file) by mimicking real data. At both read-sequence and read-count levels, scReadSim mimics real scRNA-seq and scATAC-seq data. Moreover, scReadSim provides ground truths, including unique molecular identifier (UMI) counts for scRNA-seq and open chromatin regions for scATAC-seq. In particular, scReadSim allows users to design cell-type-specific ground-truth open chromatin regions for scATAC-seq data generation. In benchmark applications of scReadSim, we show that UMI-tools achieves the top accuracy in scRNA-seq UMI deduplication, and HMMRATAC and MACS3 achieve the top performance in scATAC-seq peak calling. 
                        more » 
                        « less   
                    
                            
                            A Cell Cycle‐Aware Network for Data Integration and Label Transferring of Single‐Cell RNA‐Seq and ATAC‐Seq
                        
                    
    
            Abstract In recent years, the integration of single‐cell multi‐omics data has provided a more comprehensive understanding of cell functions and internal regulatory mechanisms from a non‐single omics perspective, but it still suffers many challenges, such as omics‐variance, sparsity, cell heterogeneity, and confounding factors. As it is known, the cell cycle is regarded as a confounder when analyzing other factors in single‐cell RNA‐seq data, but it is not clear how it will work on the integrated single‐cell multi‐omics data. Here, a cell cycle‐aware network (CCAN) is developed to remove cell cycle effects from the integrated single‐cell multi‐omics data while keeping the cell type‐specific variations. This is the first computational model to study the cell‐cycle effects in the integration of single‐cell multi‐omics data. Validations on several benchmark datasets show the outstanding performance of CCAN in a variety of downstream analyses and applications, including removing cell cycle effects and batch effects of scRNA‐seq datasets from different protocols, integrating paired and unpaired scRNA‐seq and scATAC‐seq data, accurately transferring cell type labels from scRNA‐seq to scATAC‐seq data, and characterizing the differentiation process from hematopoietic stem cells to different lineages in the integration of differentiation data. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2217515
- PAR ID:
- 10515668
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Science
- Volume:
- 11
- Issue:
- 31
- ISSN:
- 2198-3844
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract It is a challenging task to integrate scRNA-seq and scATAC-seq data obtained from different batches. Existing methods tend to use a pre-defined gene activity matrix to convert the scATAC-seq data into scRNA-seq data. The pre-defined gene activity matrix is often of low quality and does not reflect the dataset-specific relationship between the two data modalities. We propose scDART, a deep learning framework that integrates scRNA-seq and scATAC-seq data and learns cross-modalities relationships simultaneously. Specifically, the design of scDART allows it to preserve cell trajectories in continuous cell populations and can be applied to trajectory inference on integrated data.more » « less
- 
            Abstract Numerous single‐cell transcriptomic datasets from identical tissues or cell lines are generated from different laboratories or single‐cell RNA sequencing (scRNA‐seq) protocols. The denoising of these datasets to eliminate batch effects is crucial for data integration, ensuring accurate interpretation and comprehensive analysis of biological questions. Although many scRNA‐seq data integration methods exist, most are inefficient and/or not conducive to downstream analysis. Here, DeepBID, a novel deep learning‐based method for batch effect correction, non‐linear dimensionality reduction, embedding, and cell clustering concurrently, is introduced. DeepBID utilizes a negative binomial‐based autoencoder with dual Kullback–Leibler divergence loss functions, aligning cell points from different batches within a consistent low‐dimensional latent space and progressively mitigating batch effects through iterative clustering. Extensive validation on multiple‐batch scRNA‐seq datasets demonstrates that DeepBID surpasses existing tools in removing batch effects and achieving superior clustering accuracy. When integrating multiple scRNA‐seq datasets from patients with Alzheimer's disease, DeepBID significantly improves cell clustering, effectively annotating unidentified cells, and detecting cell‐specific differentially expressed genes.more » « less
- 
            null (Ed.)Abstract Motivation Single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) provides new opportunities to dissect epigenomic heterogeneity and elucidate transcriptional regulatory mechanisms. However, computational modeling of scATAC-seq data is challenging due to its high dimension, extreme sparsity, complex dependencies and high sensitivity to confounding factors from various sources. Results Here, we propose a new deep generative model framework, named SAILER, for analyzing scATAC-seq data. SAILER aims to learn a low-dimensional nonlinear latent representation of each cell that defines its intrinsic chromatin state, invariant to extrinsic confounding factors like read depth and batch effects. SAILER adopts the conventional encoder-decoder framework to learn the latent representation but imposes additional constraints to ensure the independence of the learned representations from the confounding factors. Experimental results on both simulated and real scATAC-seq datasets demonstrate that SAILER learns better and biologically more meaningful representations of cells than other methods. Its noise-free cell embeddings bring in significant benefits in downstream analyses: clustering and imputation based on SAILER result in 6.9% and 18.5% improvements over existing methods, respectively. Moreover, because no matrix factorization is involved, SAILER can easily scale to process millions of cells. We implemented SAILER into a software package, freely available to all for large-scale scATAC-seq data analysis. Availability and implementation The software is publicly available at https://github.com/uci-cbcl/SAILER. Supplementary information Supplementary data are available at Bioinformatics online.more » « less
- 
            Abstract Single cell profiling techniques including multi-omics and spatial-omics technologies allow researchers to study cell-cell variation within a cell population. These variations extend to biological networks within cells, in particular, the gene regulatory networks (GRNs). GRNs rewire as the cells evolve, and different cells can have different governing GRNs. However, existing GRN inference methods usually infer a single GRN for a population of cells, without exploring the cell-cell variation in terms of their regulatory mechanisms. Recently, jointly profiled single cell transcriptomics and chromatin accessibility data have been used to infer GRNs. Although methods based on such multi-omics data were shown to improve over the accuracy of methods using only single cell RNA-seq (scRNA-seq) data, they do not take full advantage of the single cell resolution chromatin accessibility data. We propose CeSpGRN (CellSpecificGeneRegulatoryNetwork inference), which infers cell-specific GRNs from scRNA-seq, single cell multi-omics, or single cell spatial-omics data. CeSpGRN uses a Gaussian weighted kernel that allows the GRN of a given cell to be learned from the sequencing profile of itself and its neighboring cells in the developmental process. The kernel is constructed from the similarity of gene expressions or spatial locations between cells. When the chromatin accessibility data is available, CeSpGRN constructs cell-specific prior networks which are used to further improve the inference accuracy. We applied CeSpGRN to various types of real-world datasets and inferred various regulation changes that were shown to be important in cell development. We also quantitatively measured the performance of CeSpGRN on simulated datasets and compared with baseline methods. The results show that CeSpGRN has a superior performance in reconstructing the GRN for each cell, as well as in detecting the regulatory interactions that differ between cells. CeSpGRN is available athttps://github.com/PeterZZQ/CeSpGRN.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
