Artificial intelligence-based prostate cancer (PCa) detection models have been widely explored to assist clinical diagnosis. However, these trained models may generate erroneous results specifically on datasets that are not within training distribution. In this paper, we propose an approach to tackle this so-called out-of-distribution (OOD) data problem. Specifically, we devise an end-to-end unsupervised framework to estimate uncertainty values for cases analyzed by a previously trained PCa detection model. Our PCa detection model takes the inputs of bpMRI scans and through our proposed approach we identify OOD cases
that are likely to generate degraded performance due to the data distribution shifts. The proposed OOD framework consists of two parts. First, an autoencoder-based reconstruction network is proposed, which learns discrete latent representations of in-distribution data. Second, the uncertainty is computed using perceptual loss that measures the distance between original and reconstructed images in the feature space of a pre-trained PCa detection network. The effectiveness of the proposed framework is evaluated on seven independent data collections with a total of 1,432 cases. The performance of pre-trained PCa detection model is significantly improved by excluding cases with high uncertainty.
more »
« less
This content will become publicly available on July 15, 2025
Bayesian Variational Autoencoders for Out-of-Distribution Detection in Physiological Modeling: A Case Study in Fluid Therapy
Uncertainty quantification is crucial in modeling critical care systems, where external factors such as clinical disturbances significantly impact decision-making. This study employs Bayesian variational autoencoders (BVAEs) to quantify inherent randomness in clinical data (aleatoric uncertainty) and detect uncertainty in the biases and weights of the neural network model (epistemic uncertainty). Focusing on fluid therapy, the proposed BVAE models aim to detect hemorrhage incidents through out-of-distribution (OoD) data detection. The models' ability to self-identify OoD scenarios not only provides a measure of confidence in their predictions but also highlights areas where additional data collection could enhance performance. Simulation results show promising outcomes, particularly in identifying hemorrhage through increased model uncertainty in OoD scenarios.
more »
« less
- Award ID(s):
- 2138929
- PAR ID:
- 10510869
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- Annual International Conference of the IEEE Engineering in Medicine and Biology Society
- ISSN:
- 2375-7477
- Subject(s) / Keyword(s):
- Bayesian variational autoencoder uncertainty modeling out-of-distribution (OoD) detection active hemorrhage fluid therapy
- Format(s):
- Medium: X
- Location:
- Orlando, Florida
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Many real-world scenarios in which DNN-based recognition systems are deployed have inherently fine-grained attributes (e.g., bird-species recognition, medical image classification). In addition to achieving reliable accuracy, a critical subtask for these models is to detect Out-of-distribution (OOD) inputs. Given the nature of the deployment environment, one may expect such OOD inputs to also be fine-grained w.r.t. the known classes (e.g., a novel bird species), which are thus extremely difficult to identify. Unfortunately, OOD detection in fine-grained scenarios remains largely underexplored. In this work, we aim to fill this gap by first carefully constructing four large-scale fine-grained test environments, in which existing methods are shown to have difficulties. Particularly, we find that even explicitly incorporating a diverse set of auxiliary outlier data during training does not provide sufficient coverage over the broad region where fine-grained OOD samples locate. We then propose Mixture Outlier Exposure (MixOE), which mixes ID data and training outliers to expand the coverage of different OOD granularities, and trains the model such that the prediction confidence linearly decays as the input transitions from ID to OOD. Extensive experiments and analyses demonstrate the effectiveness of MixOE for building up OOD detector in fine-grained environments. The code is available at https://github.com/zjysteven/MixOE.more » « less
-
null (Ed.)Traditional deep neural networks (NNs) have significantly contributed to the state-of-the-art performance in the task of classification under various application domains. However, NNs have not considered inherent uncertainty in data associated with the class probabilities where misclassification under uncertainty may easily introduce high risk in decision making in real-world contexts (e.g., misclassification of objects in roads leads to serious accidents). Unlike Bayesian NN that indirectly infer uncertainty through weight uncertainties, evidential NNs (ENNs) have been recently proposed to explicitly model the uncertainty of class probabilities and use them for classification tasks. An ENN offers the formulation of the predictions of NNs as subjective opinions and learns the function by collecting an amount of evidence that can form the subjective opinions by a deterministic NN from data. However, the ENN is trained as a black box without explicitly considering inherent uncertainty in data with their different root causes, such as vacuity (i.e., uncertainty due to a lack of evidence) or dissonance (i.e., uncertainty due to conflicting evidence). By considering the multidimensional uncertainty, we proposed a novel uncertainty-aware evidential NN called WGAN-ENN (WENN) for solving an out-of-distribution (OOD) detection problem. We took a hybrid approach that combines Wasserstein Generative Adversarial Network (WGAN) with ENNs to jointly train a model with prior knowledge of a certain class, which has high vacuity for OOD samples. Via extensive empirical experiments based on both synthetic and real-world datasets, we demonstrated that the estimation of uncertainty by WENN can significantly help distinguish OOD samples from boundary samples. WENN outperformed in OOD detection when compared with other competitive counterpartsmore » « less
-
Pretrained Transformers achieve remarkable performance when training and test data are from the same distribution. However, in real-world scenarios, the model often faces out-of-distribution (OOD) instances that can cause severe semantic shift problems at inference time. Therefore, in practice, a reliable model should identify such instances, and then either reject them during inference or pass them over to models that handle another distribution. In this paper, we develop an unsupervised OOD detection method, in which only the in-distribution (ID) data are used in training. We propose to fine-tune the Transformers with a contrastive loss, which improves the compactness of representations, such that OOD instances can be better differentiated from ID ones. These OOD instances can then be accurately detected using the Mahalanobis distance in the model’s penultimate layer. We experiment with comprehensive settings and achieve near-perfect OOD detection performance, outperforming baselines drastically. We further investigate the rationales behind the improvement, finding that more compact representations through margin-based contrastive learning bring the improvement. We release our code to the community for future research.more » « less
-
This paper presents a novel method for predicting hemodynamic responses in hemorrhage resuscitation. The proposed approach, namely, robust nonlinear state space modeling (RNSSM), aims to overcome challenges of identifying reliable models using limited and noisy critical care data by innovatively integrating autoencoder learning and variational Gaussian inference in a unified framework. Simulation results demonstrate the initial feasibility and performance evidence of the RNSSM approach as a digital twin of an animal study in hemorrhage resuscitation scenarios.more » « less