Abstract Incorporating fluorescent quantum defects in the sidewalls of semiconducting single-wall carbon nanotubes (SWCNTs) through chemical reaction is an emerging route to predictably modify nanotube electronic structures and develop advanced photonic functionality. Applications such as room-temperature single-photon emission and high-contrast bio-imaging have been advanced through aryl-functionalized SWCNTs, in which the binding configurations of the aryl group define the energies of the emitting states. However, the chemistry of binding with atomic precision at the single-bond level and tunable control over the binding configurations are yet to be achieved. Here, we explore recently reported photosynthetic protocol and find that it can control chemical binding configurations of quantum defects, which are often referred to as organic color centers, through the spin multiplicity of photoexcited intermediates. Specifically, photoexcited aromatics react with SWCNT sidewalls to undergo a singlet-state pathway in the presence of dissolved oxygen, leading to ortho binding configurations of the aryl group on the nanotube. In contrast, the oxygen-free photoreaction activates previously inaccessible para configurations through a triplet-state mechanism. These experimental results are corroborated by first principles simulations. Such spin-selective photochemistry diversifies SWCNT emission tunability by controlling the morphology of the emitting sites.
more »
« less
Solvent Isotope Effects on the Creation of Fluorescent Quantum Defects in Carbon Nanotubes by Aryl Diazonium Chemistry
The integration of aryl diazonium and carbon nanotube chemistries has offered rich and versatile tools for creating nanomaterials of unique optical and electronic properties in a controllable fashion. The diazonium reaction with single-wall carbon nanotubes (SWCNTs) is known to proceed through a radical or carbocation mechanism in aqueous solutions, with deuterated water (D2O) being the frequently used solvent. Here, we show strong water solvent isotope effects on the aryl diazonium reaction with SWCNTs for creating fluorescent quantum defects using water (H2O) and D2O. We found a deduced reaction constant of ∼18.2 times larger value in D2O than in H2O, potentially due to their different chemical properties. We also observed the generation of new defect photoluminescence over a broad concentration range of diazonium reactants in H2O, as opposed to a narrow window of reaction conditions in D2O under UV excitation. Without UV light, the physical adsorption of diazonium on the surface of SWCNTs led to the fluorescence quenching of nanotubes. These findings provide important insights into the aryl diazonium chemistry with carbon nanotubes for creating promising material platforms for optical sensing, imaging, and quantum communication technologies.
more »
« less
- Award ID(s):
- 2142579
- PAR ID:
- 10510954
- Publisher / Repository:
- ACS Publications
- Date Published:
- Journal Name:
- Journal of the American Chemical Society
- Volume:
- 145
- Issue:
- 47
- ISSN:
- 0002-7863
- Page Range / eLocation ID:
- 25621 to 25631
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In the guanine functionalization reaction, single-wall carbon nanotubes (SWCNTs) coated with physisorbed single-stranded DNA become covalently bonded to guanine bases in the DNA. The resulting perturbations to SWCNT electronic and optical properties depend on the spacings between the sites of covalent bonding. To model those spacings, we have used advanced molecular dynamics simulations (replica exchange with solute tempering) to study adsorbed conformations of (GT)10 ssDNA strands and the corresponding distributions of guanine locations prior to reaction. The simulations explored the effects of interstrand interactions, nanotube end effects, solution ionic strength, DNA/SWCNT mass ratio, and SWCNT diameter on conformations and guanine spacings. We analyzed the impacts of such simulation conditions on the spatial distribution of guanine nucleobases along the nanotube axis. Irregularities in those spacings are suggested to cause inhomogeneities in exciton energy landscapes and be a source of spectral broadening in SWCNTs modified by guanine functionalization.more » « less
-
The reaction of aqueous suspensions of single-wall carbon nanotubes (SWCNTs) with UV-excited sodium hypochlorite has previously been reported to be an efficient route for doping nanotubes with oxygen atoms. We have investigated how this reaction system is affected by pH level, dissolved O2 content, and radical scavengers and traps. Products were characterized with near-IR fluorescence, Raman, and XPS spectroscopy. The reaction is greatly accelerated by removal of dissolved O2 and strongly suppressed by TEMPO, a radical trap. Alcohols added as radical scavengers alter the reaction efficiency and the product peak emission wavelengths. Photofunctionalization with 300 nm irradiation is substantially less efficient at pH levels low enough to protonate the OCl- ion to HOCl. We deduce that in mildly treated high pH samples, the main product is sp2 hybridized O-doped adducts formed by reaction of SWCNTs with atomic oxygen in its 3P (ground) level. By contrast, treatment under low pH conditions leads to sp3 hybridized SWCNT adducts formed by the addition of secondary radicals from reactions of OH and Cl. There is also evidence for additional photoreactions of product species under stronger irradiation. Researchers using photoexcited hypochlorite for SWCNT functionalization should be alert to the range of products and the sensitivity to reaction conditions in this system.more » « less
-
Covalent functionalization of single-walled carbon nanotubes (SWCNTs) is a promising route to enhance the quantum yield of exciton emission and can lead to single-photon emission at room temperature. However, the spectral linewidth of the defect-related E 11 * emission remains rather broad. Here, we systematically investigate the low-temperature exciton emission of individual SWCNTs that have been dispersed with sodium-deoxycholate (DOC) and polyfluorene (PFO-BPy), are grown by laser vaporization (LV) or by CoMoCat techniques and are functionalized with oxygen as well as 3,5-dichlorobenzene groups. The E 11 excitons in oxygen-functionalized SWCNTs remain rather broad with up to 10 meV linewidth while exciton emission from 3,5-dichlorobenzene functionalized SWCNTs is found to be about one order of magnitude narrower. In all cases, wrapping with PFO-BPy provides significantly better protection against pump induced dephasing compared to DOC. To further study the influence of exciton localization on pump-induced dephasing, we have embedded the functionalized SWCNTs into metallo-dielectric antenna cavities to maximize light collection. We show that 0D excitons attributed to the E 11 * emission of 3,5-dichlorobenzene quantum defects of LV-grown SWCNTs can display near resolution-limited linewidths down to 35 μeV. Interestingly, these 0D excitons give rise to a 3-fold suppressed pump-induced exciton dephasing compared to the E 11 excitons in the same SWCNT. These findings provide a foundation to build a unified description of the emergence of novel optical behavior from the interplay of covalently introduced defects, dispersants, and exciton confinement in SWCNTs and might further lead to the realization of indistinguishable photons from carbon nanotubes.more » « less
-
Atomic defect color centers in solid-state systems hold immense potential to advance various quantum technologies. However, the fabrication of high-quality, densely packed defects presents a significant challenge. Herein we introduce a DNA-programmable photochemical approach for creating organic color-center quantum defects on semiconducting single-walled carbon nanotubes (SWCNTs). Key to this precision defect chemistry is the strategic substitution of thymine with halogenated uracil in DNA strands that are orderly wrapped around the nanotube. Photochemical activation of the reactive uracil initiates the formation of sp3 defects along the nanotube as deep exciton traps, with a pronounced photoluminescence shift from the nanotube band gap emission (by 191 meV for (6,5)-SWCNTs). Furthermore, by altering the DNA spacers, we achieve systematic control over the defect placements along the nanotube. This method, bridging advanced molecular chemistry with quantum materials science, marks a crucial step in crafting quantum defects for critical applications in quantum information science, imaging, and sensing.more » « less
An official website of the United States government

