Abstract BackgroundDespite well‐documented benefits, instructor adoption of active learning has been limited in engineering education. Studies have identified barriers to instructors’ adoption of active learning, but there is no well‐tested instrument to measure instructors perceptions of these barriers. PurposeWe developed and tested an instrument to measure instructors’ perceptions of barriers to adopting active learning and identify the constructs that coherently categorize those barriers. MethodWe used a five‐phase process to develop an instrument to measure instructors’ perceived barriers to adopting active learning. In Phase 1, we built upon the Faculty Instructional Barriers and Identity Survey (FIBIS) to create a draft instrument. In Phases 2 and 3, we conducted exploratory factor analysis (EFA) on an initial 45‐item instrument and a refined 21‐item instrument, respectively. We conducted confirmatory factor analysis (CFA) in Phases 4 and 5 to test the factor structure identified in Phases 2 and 3. ResultsOur final instrument consists of 17 items and four factors: (1) student preparation and engagement; (2) instructional support; (3) instructor comfort and confidence; and (4) institutional environment/rewards. Instructor responses indicated that time considerations do not emerge as a standalone factor. ConclusionsOur 17‐item instrument exhibits a sound factor structure and is reliable, enabling the assessment of perceived barriers to adopting active learning in different contexts. The four factors align with an existing model of instructional change in science, technology, engineering, and mathematics (STEM). Although time is a substantial instructor concern that did not comprise a standalone factor, it is closely related to multiple constructs in our final model. 
                        more » 
                        « less   
                    
                            
                            Engaging classroom observation: A brief measure of active learning in the college classroom
                        
                    
    
            The purpose of this study was to develop a valid, reliable, and brief measure of active learning in college classrooms that is cheap and easy to complete and yields results that faculty can easily use to inform their development as instructors. Initial construct and face validity was achieved by modifying existing instruments and creating a draft of a brief measure of active learning for external expert review. Following the suggested revisions, the engaging classroom observation was then piloted and revised as necessary. Reliability was tested and measures of internal consistency and interrater reliability were acceptable. A principal component analysis showed two components that were moderately correlated, which indicated the potential they could be combined. An Exploratory Factor Analysis confirmed the instrument is measuring one factor, which we propose as active learning. This study is significant because it offers a brief instrument based on students’ perceptions that can be used formatively by faculty. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2247928
- PAR ID:
- 10511098
- Publisher / Repository:
- SAGE
- Date Published:
- Journal Name:
- Active Learning in Higher Education
- Edition / Version:
- 0
- Volume:
- 0
- Issue:
- 0
- ISSN:
- 1469-7874
- Page Range / eLocation ID:
- 1-13
- Subject(s) / Keyword(s):
- active learning, brief measure of active learning, instrument, student perceptions, validity study
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Embeddedness is a construct with potential explanatory power in studies of student persistence, retention, and success. The goal of this study was to address a need for a brief embeddedness measure for use in small college undergraduate environments. Three measures of embeddedness were developed: an initial 43-item scale, a reduced 35-item scale, and a final brief 12-item version of the scale. A total of 450 undergraduate students at a small private liberal arts college were included in the study. Internal consistency reliability was assessed with both McDonald's omega and Cronbach's alpha, test–retest reliability was observed over a one-year period, factor analysis was used in item analysis, structural validity was examined with confirmatory factor analysis, and criterion-related validity was assessed with convergent and discriminant validity correlations. The results provide acceptable initial estimates of reliability and validity.more » « less
- 
            The goal of the study presented here was to test the reliability and validity of faculty responses to the Strategies to Reduce Student Resistance (SRSR) a measure of Science, Engineering, and Mathematics university faculty use and motivation (self-efficacy and value) for using instructional strategies to reduce student resistance to active learning. The development of this measure will support research and interventions designed to support faculty implementation of active learning strategies. The scale examined here was adapted from a student version, developed and tested as part of a national study on student resistance to active learning in engineering programs. This project reveled a set of faculty behaviors which supported students’ positive response to active learning strategies (Authors, 2017). Although student perspectives on faculty behavior is important, we felt it was necessary to adapt the scale to measure faculty’s perspectives on the strategies they use and their motivation to use those strategies as part of their use of active learning in their classroom.more » « less
- 
            null (Ed.)Establishing and sustaining a sense of belonging is a necessary human motivation with particular implications for student learning, including in engineering. Students who experience a sense of belonging are more likely to display intrinsic motivation and establish a stronger sense of identity and persistence. It is important, however, to distinguish different domains of belonging, such as belonging to one’s university, belonging to a major, and belonging in the classroom setting. Our study examines if and how faculty support efforts contribute to diverse students’ sense of belonging in the classroom setting. Specifically, we sought to answer the following research questions: Which faculty support efforts promote a sense of classroom belongingness? Do faculty support efforts differentially promote a sense of classroom belongingness for students based on their demographic characteristics? Data for this study was collected in the Fall of 2018, across ten institutions, n = 819. We used the Faculty Support items from the STEM Student Perspectives of Support Instrument developed from Lee’s model of co-curricular support to answer our research questions. Demographic categories were created to understand if and how faculty support efforts differentially promote a sense of belonging for minoritized students compared to their counterparts. Multiple regression analysis was conducted to examine the faculty support efforts that fostered a sense of belonging in the classroom. Interaction effects were included to understand how faculty support efforts affected classroom belongingness for the students in the demographic groups we identified. Minoritized women were less likely to feel a sense of belonging in the classroom when compared to majoritized men. Neither groups of women believed that their instructors wanted them to succeed, thus negatively impacting their classroom belongingness. There were, however, faculty support efforts that positively contributed to a sense of belonging in the classroom for minoritized women, including instructors’ availability, knowing that they could ask instructors for help in course-related material, and when instructors fostered an atmosphere of mutual respect. Additionally, minoritized women felt a sense of classroom belonging when they could capitalize on their previous experiences to scaffold their learning. Our findings highlight classroom practices and strategies faculty can use in the classroom to support minoritized women’s sense of belonging. These practices and strategies will be a crucial resource for engineering educators and administrators who seek to improve the field’s retention of minoritized and women students. Whereas efforts have been made to recruit minoritized students into engineering, our study points to a clear and crucial role for faculty to play: they can support minoritized students by fostering a sense of belonging in engineering classrooms.more » « less
- 
            The purpose of this study is to develop an instrument to measure student perceptions about the learning experiences in their online undergraduate engineering courses. Online education continues to grow broadly in higher education, but the movement toward acceptance and comprehensive utilization of online learning has generally been slower in engineering. Recently, however, there have been indicators that this could be changing. For example, ABET has accredited online undergraduate engineering degrees at Stony Brook University and Arizona State University (ASU), and an increasing number of other undergraduate engineering programs also offer online courses. During this period of transition in engineering education, further investigation about the online modality in the context of engineering education is needed, and survey instrumentation can support such investigations. The instrument presented in this paper is grounded in a Model for Online Course-level Persistence in Engineering (MOCPE), which was developed by our research team by combining two motivational frameworks used to study student persistence: the Expectancy x Value Theory of Achievement Motivation (EVT), and the ARCS model of motivational design. The initial MOCPE instrument contained 79 items related to students’ perceptions about the characteristics of their courses (i.e., the online learning management system, instructor practices, and peer support), expectancies of course success, course task values, perceived course difficulties, and intention to persist in the course. Evidence of validity and reliability was collected using a three-step process. First, we tested face and content validity of the instrument with experts in online engineering education and online undergraduate engineering students. Next, the survey was administered to the online undergraduate engineering student population at a large, Southwestern public university, and an exploratory factor analysis (EFA) was conducted on the responses. Lastly, evidence of reliability was obtained by computing the internal consistency of each resulting scale. The final instrument has seven scales with 67 items across 10 factors. The Cronbach alpha values for these scales range from 0.85 to 0.97. The full paper will provide complete details about the development and psychometric evaluation of the instrument, including evidence of and reliability. The instrument described in this paper will ultimately be used as part of a larger, National Science Foundation-funded project investigating the factors influencing online undergraduate engineering student persistence. It is currently being used in the context of this project to conduct a longitudinal study intended to understand the relationships between the experiences of online undergraduate engineering students in their courses and their intentions to persist in the course. We anticipate that the instrument will be of interest and use to other engineering education researchers who are also interested in studying the population of online students.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    