skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Classroom Practices that Support Minoritized Engineering Students’ Sense of Belonging
Establishing and sustaining a sense of belonging is a necessary human motivation with particular implications for student learning, including in engineering. Students who experience a sense of belonging are more likely to display intrinsic motivation and establish a stronger sense of identity and persistence. It is important, however, to distinguish different domains of belonging, such as belonging to one’s university, belonging to a major, and belonging in the classroom setting. Our study examines if and how faculty support efforts contribute to diverse students’ sense of belonging in the classroom setting. Specifically, we sought to answer the following research questions: Which faculty support efforts promote a sense of classroom belongingness? Do faculty support efforts differentially promote a sense of classroom belongingness for students based on their demographic characteristics? Data for this study was collected in the Fall of 2018, across ten institutions, n = 819. We used the Faculty Support items from the STEM Student Perspectives of Support Instrument developed from Lee’s model of co-curricular support to answer our research questions. Demographic categories were created to understand if and how faculty support efforts differentially promote a sense of belonging for minoritized students compared to their counterparts. Multiple regression analysis was conducted to examine the faculty support efforts that fostered a sense of belonging in the classroom. Interaction effects were included to understand how faculty support efforts affected classroom belongingness for the students in the demographic groups we identified. Minoritized women were less likely to feel a sense of belonging in the classroom when compared to majoritized men. Neither groups of women believed that their instructors wanted them to succeed, thus negatively impacting their classroom belongingness. There were, however, faculty support efforts that positively contributed to a sense of belonging in the classroom for minoritized women, including instructors’ availability, knowing that they could ask instructors for help in course-related material, and when instructors fostered an atmosphere of mutual respect. Additionally, minoritized women felt a sense of classroom belonging when they could capitalize on their previous experiences to scaffold their learning. Our findings highlight classroom practices and strategies faculty can use in the classroom to support minoritized women’s sense of belonging. These practices and strategies will be a crucial resource for engineering educators and administrators who seek to improve the field’s retention of minoritized and women students. Whereas efforts have been made to recruit minoritized students into engineering, our study points to a clear and crucial role for faculty to play: they can support minoritized students by fostering a sense of belonging in engineering classrooms.  more » « less
Award ID(s):
1734044
PAR ID:
10294161
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the American Society for Engineering Education
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Backgrounds This study examined how developing an engineering identity through the interplay between interest, recognition, and performance/competence beliefs and establishing a sense of belonging supported women’s persistence beliefs in engineering. Persistence belief in this study is captured through women’s certainty of graduating with an engineering degree. Students’ levels of motivation, affective states, and actions are based on what students believe to be true. Data were gathered from a survey administered to engineering students at nine institutions across the USA. Only female engineering students were used in the analysis. Students were further grouped into categories based on the representation of their race/ethnicity in engineering; 121 women were identified as minoritized in engineering, and 252 were identified as part of the majority group in engineering. Structural equation modeling was used to understand how the development of an engineering identity and modes of belonging (i.e., belonging in the major and in the classroom environment) supported women’s certainty to graduate with an engineering degree. All latent constructs were examined for measurement invariance; partial measurement invariance was achieved. Equality constraints on the structural paths of the model were not enforced to allow for differences across groups. Results Seeing oneself as an engineer (i.e., internal recognition) did not support minoritized women’s certainty to persist toward degree completion, whereas this internal recognition supported majority women’s persistence. Belonging in the major and belonging in the classroom environment did not support minoritized women’s certainty to persist. Establishing a sense of belonging in the classroom environment supported majority women’s certainty to persist. Minoritized women’s persistence toward degree completion was supported by their interest in engineering and their confidence in performing well in engineering coursework. However, interest in engineering was two times more influential toward minoritized women’s persistence than their performance competence beliefs. Conclusion These findings provide educators with a nuanced understanding of how identity development and modes of belonging differentially affect women’s persistence beliefs. These findings suggest that educators need to understand the powerful influence minoritized women’s interest in engineering has on their persistence beliefs and create mechanisms to continuously reinforce interest. 
    more » « less
  2. Minoritized and underrepresented students have historically experienced prejudice and discrimination within and outside of their classrooms, negatively impacting their educational outcomes. Research has illustrated that student academic and social success can be improved through instructors creating inclusive classroom environments that facilitate a sense of belonging. The impact of creating more inclusive environments is well-studied, however actionable guidance on how to do this, especially in more technical disciplines such as engineering, is lacking. This study aims to address this gap by developing an inclusive engineering classroom practices menu along with accompanying tools for faculty seeking to improve their classrooms. The first year of this study, as detailed at ASEE’s Annual Conference in June 2022, saw the development of the inclusive engineering classroom practices menu as well as the pilot of the inclusive learning communities for faculty across three partner institutions. The student and faculty assessment plans were also curated and involved both a student and faculty survey as well as the opportunity for students and faculty to engage in short-format interviews. This presentation will focus on the survey and interview data that has been collected in the second year of the project and the website that has been developed to further engage faculty and other institutions and partners interested in the study. This second year of this study will also see the creation of a decision matrix to aid faculty and instructors to further promote and support the implementation of inclusive practices in engineering classrooms. The continued refinement of the menu and creation of both the website and decision matrix are the next steps in the development of an inclusive classrooms toolkit that can be used across all engineering classrooms and curriculums. 
    more » « less
  3. When examining factors affecting student academic success, it is important to consider how these factors interact with one another. Students’ affective attributes are complex in nature; thus, research methods and analyses should holistically examine how these attributes interact, not simply as a set of distinct constructs. Prior research into engineering students’ affective attributes, in which we used a validated survey to assess student motivation, identity, goal orientation, sense of belonging, career outcome expectations, grit and personality traits, demonstrated a positive correlation between perceptions of belongingness in engineering and time spent in the program. Other prior research has examined interactions between affective attributes, for example, engineering identity as a predictor of grit (consistency of interest). However, more work is needed to examine the complex relationships between sense of belonging, engineering identity, future career outcome expectations and motivation, particularly for students in an engineering program undergoing curricular change. This paper describes a confirmatory factor analysis and structural equation model to examine how engineering identity, career outcome expectations and time-oriented motivation (specifically, students’ future time perspectives, or FTP) impact their sense of belonging in engineering, with grit (consistency of interest) as a moderator of these relationships. To conduct these analyses, we used survey data collected over two years from sophomores, juniors, and seniors enrolled in an undergraduate civil engineering program (2017-18, n=358; 2018-19, n=556). Based on descriptive statistics and initial statistical comparisons, we confirmed our prior findings that students’ sense of belonging at the course level increased with time in the program (from sophomore to senior year), and that engineering identity increased with time in the program as well. In addition, we observed that seniors had higher perceived instrumentality, a sub-construct of FTP indicating their perceived usefulness of their courses in reaching their future goals, than sophomores and juniors. We found that course belongingness and FTP have the strongest influence on belongingness compared to other affective attributes we assessed. When identity and motivation were factored in, career outcome expectations were not influential to engineering belongingness. Finally, we found that time-oriented motivation (FTP) was also a mediator of this relationship through its influence on grit (consistency of interest). 
    more » « less
  4. More women than men in the US graduate college, but women constitute only 16% of the engineering workforce [1]. Women frequently attribute their lack of persistence in engineering to a chilly academic climate [2]. Researchers have suggested that developing a robust engineering identity could moderate a climate effect and support improved retention and graduation of female engineers [2]. However, there is little empirical data on interrelationships among gender, perceived academic climate in engineering programs, engineering identity, and belonging to an engineering community. We drew on social identity theory and extant literature to develop four research questions: 1) Are there any differences between men and women regarding perceived academic climate, sense of belonging, and engineering identity? 2) Does academic climate predict engineering identity in the same way for women and men? 3)Does sense of belonging mediate the relationship between perceived academic climate and engineering identity? 4) Do engineering students who are women demonstrate different relationships among perceived climate, engineering identity, and belongingness from men? We used survey data from a multi-year NSF-funded project (Award # 1726268, #1726088, and #1725880/2033129) that incorporated experimental course-based interventions to build an inclusive curriculum. Surveys were administered at the beginning and end of the semester. We found that at the end of the semester women engineering undergraduates reported lower engineering identity though the initial engineering identity, perceived academic climate, and sense of belonging were the same for both men and women engineering undergraduates. Multiple regression analyses with 601 first-year engineer majors (21% female) indicated perceived climate and gender accounted for 48% of engineering identity variability. The interaction between perceived climate and gender on engineering identity was not statistically significant. Mediation analysis revealed that sense of belonging (b=0.42, 95% CI [0.30, 0.53]) mediated the relationship between perceived climate and engineering identity for both males and females. Sense of belonging was critical in engineering identity. Moderated mediation analysis indicated gender did not moderate the indirect effect of perceived climate on engineering identity through a sense of belonging. 
    more » « less
  5. First-generation college students in engineering accumulate bodies of knowledge through their working-class families. In our ethnographic data of first-generation college students, we identified tinkering knowledge from home and from work, perspective taking, mediational ability, and connecting experiences as knowledge sources brought to engineering. The purpose of this paper was to understand how first-generation college students’ accumulated bodies of knowledge (i.e., funds of knowledge) support their beliefs about performing well in engineering coursework, feeling a sense of belonging in the classroom, and certainty of graduating. Data for this study came from a survey administered in the Fall of 2018 from ten universities across the US. In this study, only the sample of students who indicated their parents had less than a bachelor’s degree (n = 378) were used. A structural equation modeling technique was employed to examine several interconnected research questions pertaining to funds of knowledge, performance/competence beliefs, classroom belongingness, and certainty of graduating with an engineering degree. Our analysis demonstrates that the accumulated bodies of knowledge obtained through tinkering at home, tinkering at work, and the skill of being a mediator served to scaffold concepts that students were currently learning in engineering. There was a negative direct relationship between students’ ability to make connections between their home activities to scaffold what they are currently learning and their certainty of graduating with an engineering degree. However, first-generation college students’ perceptions of performing well in their engineering coursework and their sense of belonging in the classroom positively supported their certainty of graduating thus emphasizing the importance of connecting students’ funds of knowledge to engineering coursework and classroom instruction. Implications for possible approaches towards connecting first-generation college students’ funds of knowledge to engineering coursework and classroom culture are discussed. 
    more » « less