ABSTRACT The overwhelming majority of research on wild bumble bees has focused on the social colony stage. Nest‐founding queens in the early season are difficult to study because incipient nests are challenging to find in the wild and the foundress queen flight period is very short relative to the entire nesting period. As a result, natural history information on foundress queens is exceedingly rare. New methodological approaches are needed to adequately study this elusive life stage. We trap‐nested wild queen bumble bees in artificial nest boxes in Gothic, Colorado and used a custom‐built radio frequency identification (RFID) system to continuously record queen foraging activity (inferred from entering and exiting the nest) for the majority of their spring flight periods. Foundress queens made frequent, short foraging trips, which tended to increase in duration over the course of the flight period. All queens who produced adult workers ceased foraging within approximately 1 week after workers emerged in the nest. We observed frequent nest failure among foundress queens: Fewer than one quarter of queens who laid eggs in nest boxes went on to produce reproductive gynes at the end of the season. We also report nest characteristics and curious phenomena we observed, including conspecific nest invasion and queens remaining outside the nest overnight. We present this trap‐nesting and subsequent RFID tracking method as a valuable, albeit resource‐intensive, path forward for uncovering new information about the elusive, incipient life stage of wild bumble bees.
more »
« less
Foraging behavior and the nest architecture of a high-Andean stingless bee (Hymenoptera: Apidae: Meliponini) revealed by X-ray computerized tomography
Abstract Stingless bees (Hymenoptera: Apidae: Meliponini) are key pollinators of both cultivated and wild plants in tropical and subtropical areas of the world. While most species are found in lowland to mid-elevations, a few have adapted to high elevations, and their biology remains poorly understood. We assess the foraging pattern ofParapartamona zonata(Smith) in the central Andes of Colombia (2583 m.a.s.l.) and apply computer tomography to visualize and characterize its internal nest architecture. Bees foraged for pollen and nesting materials (resin and/or mud) from sunrise (5:40 h) to sunset (17:45), even at ambient temperatures as low as 11 °C. Foraging varied significantly throughout the day and temperature and sky condition explained 47% of its variance. Differences in the nest architecture, when compared with previous records, suggest that nesting behavior might be variable. These results are discussed in the context of behavioral adaptations in this unique environmental niche.
more »
« less
- Award ID(s):
- 1950805
- PAR ID:
- 10511163
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Apidologie
- Volume:
- 55
- Issue:
- 3
- ISSN:
- 0044-8435
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In cleptoparasitic bees, host aggression and detection avoidance might be the main selective pressures shaping host-parasite interactions. However, the behavioral responses toward parasitism are unknown for most host species. In this study, we investigated the host-parasite interactions and behaviors of the cleptoparasitic beeTriepeolus remigatuswhen parasitizing the nests of its host, the squash beeXenoglossa(Peponapis)pruinosa. Using circle-tube behavioral assays and direct observations at a nest aggregation ofX. pruinosa, we assessed whether interactions between host and parasite were aggressive, tolerant, or avoidant and characterized the general parasitic behavior ofT. remigatus. Our results reveal a lack of aggression between host and cuckoo bees, with interactions primarily characterized by tolerant and avoidant behaviors. Squash bees displayed minimal aggression toward both conspecifics and parasites. Interestingly, despite the absence of aggressive responses,T. remigatuspreferred entering nests while the host was foraging, potentially indicating a strategy to avoid the discovery of parasitic visits. Furthermore, field observations provided insights into the parasitic behavior ofT. remigatus, revealing primarily rapid visits to host nests without extensive inspection. The limited aggression and short time for nest visits observed inT. remigatussuggest adaptations to optimize parasitic success while minimizing host detection. Overall, our findings contribute to a better understanding of the behavior of open-cell parasites and provide a first accounting of the squash bee behavior when encountering parasitic bees. Further research is needed to elucidate the mechanisms underlying host-parasite coevolution and response to parasitism in ground-nesting bees.more » « less
-
Abstract The temperature of the nest influences fitness in cavity-nesting bees. Females may choose nest cavities that mitigate their offspring’s exposure to stressful temperatures. This study aims to understand how cavity temperature impacts the nesting preference of the solitary bee Megachile rotundata (Fabricius) under field conditions. We designed and 3D printed nest boxes that measured the temperatures of 432 cavities. Nest boxes were four-sided with cavity entrances facing northeast, northwest, southeast, and southwest. Nest boxes were placed along an alfalfa field in Fargo, ND and were observed daily for completed nests. Our study found that cavity temperature varied by direction the cavity faced and by the position of the cavity within the nest box. The southwest sides recorded the highest maximum temperatures while the northeast sides recorded the lowest maximum temperatures. Nesting females filled cavities on the north-facing sides faster than cavities on the south-facing sides. The bees preferred to nest in cavities with lower average temperatures during foraging hours, and cavities that faced to the north. The direction the cavity faced was associated with the number of offspring per nest. The southwest-facing cavities had fewer offspring than nests on the northeast side. Our study indicates that the nesting box acts as a microclimate, with temperature varying by position and direction of the cavity. Variation in cavity temperature affected where females chose to nest, but not their reproductive investment.more » « less
-
Abstract Ants alter soil moisture and nutrient distributions during foraging and nest construction. Here, we investigated how the effects of ants on soil vary with elevation. We compared moisture, carbon, and nitrogen levels in soil samples taken both within nests and nearby the nests (control) of two subterranean ant species. Using a paired design, we sampled 17 sites along elevation gradients in two California mountain ranges (Formica francoeuriin the San Jacinto mountains andFormica sibyllain the Sierra Nevada). We observed an interaction between soil carbon and nitrogen composition and elevation in each mountain range. At lower elevations, nest soil had lower amounts of carbon and nitrogen than control soil, but at higher elevations, nest soil had higher amounts of carbon and nitrogen than control soil. However, our sampling method may only breach the interior of ant nests in some environments. The nest soil moisture did not show any elevational patterns in either mountain range. Ants likely modulate soil properties differently across environmental gradients, but testing this effect must account for variable nest architecture and other climate and landscape differences across diverse habitats.more » « less
-
Protecting diverse solitary ground-nesting bees remains a pivotal conservation concern. Ground-nesting bees are negatively impacted by anthropogenic land use change that often removes suitable nesting habitat from the landscape. Despite their enormous ecological and agricultural contributions to pollination, solitary, ground-nesting bees are often neglected, partly due to the significant obstacle of discovering exactly where these bees establish their nests. To address this limitation, we have developed a ‘community science’ project to map aggregations of ground-nesting bees globally. In certain locations, their abundances reach astounding levels, sometimes in the millions, but are scarcely known. Utilizing the iNaturalist platform, which permits geo-referencing of site observations and bee identification, we are providing public education and seeking public engagement to document bee aggregations in order to understand the nesting requirements of diverse species and open new opportunities for their conservation. Conservation priorities may then unequivocally be directed to areas of high species richness, nest densities, and nesting sites of rare bees. Such community-led efforts are vital for successful long-term management of native bees and the biotic and abiotic landscape data from nest-site localities can allow modeling to predict nest-site suitability and to readily test such predictions on the ground. Here, we summarize the progress, current limitations, and opportunities of using a global mapping project (GNBee) to direct conservation efforts and research toward solitary ground-nesting bees.more » « less